用python写一个MODRQN的代码
时间: 2023-12-17 14:11:01 浏览: 73
MODRQN是一种深度强化学习算法,它结合了多步时间差分算法和RQN(Recurrent Q-Network)的思想,可以用于解决强化学习中的决策任务。下面是一个用Python实现MODRQN算法的代码示例:
```python
import tensorflow as tf
import numpy as np
class MODRQN:
def __init__(self, state_dim, action_dim, num_steps, num_layers, hidden_dim):
self.state_dim = state_dim
self.action_dim = action_dim
self.num_steps = num_steps
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.inputs = tf.placeholder(tf.float32, [None, self.num_steps, self.state_dim])
self.actions = tf.placeholder(tf.int32, [None, self.num_steps])
self.targets = tf.placeholder(tf.float32, [None])
# 定义模型
lstm_cells = [tf.nn.rnn_cell.BasicLSTMCell(self.hidden_dim) for _ in range(num_layers)]
lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells)
initial_state = lstm.zero_state(tf.shape(self.inputs)[0], tf.float32)
outputs, _ = tf.nn.dynamic_rnn(lstm, self.inputs, initial_state=initial_state, dtype=tf.float32)
outputs = tf.transpose(outputs, [1, 0, 2])
last_output = tf.gather(outputs, self.num_steps - 1)
# 计算价值函数
self.w = tf.Variable(tf.random_normal([self.hidden_dim, self.action_dim]))
self.b = tf.Variable(tf.zeros([self.action_dim]))
q = tf.matmul(last_output, self.w) + self.b
# 计算损失函数
mask = tf.one_hot(self.actions, self.action_dim)
q_masked = tf.reduce_sum(q * mask, axis=1)
self.loss = tf.reduce_mean(tf.square(self.targets - q_masked))
self.optimizer = tf.train.AdamOptimizer().minimize(self.loss)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
def train(self, inputs, actions, targets):
self.sess.run(self.optimizer, feed_dict={self.inputs: inputs, self.actions: actions, self.targets: targets})
def predict(self, inputs):
return self.sess.run(q, feed_dict={self.inputs: inputs})
```
这个代码定义了一个MODRQN类,其构造函数需要传入状态维度state_dim、动作维度action_dim、多步时间差分算法的时间步数num_steps、RQN的层数num_layers和隐藏维度hidden_dim。在训练时,需要调用train方法,传入输入inputs、动作actions和目标值targets,即可更新模型参数。在预测时,需要调用predict方法,传入输入inputs,即可得到模型的输出。
阅读全文