用pytorch,使用VGG块与残差结构搭建一个网络模型,仅给出网络模型
时间: 2023-03-02 16:00:55 浏览: 119
pytorch网络模型
好的,下面是一个使用 PyTorch 搭建的网络模型,同时包含 VGG 块和残差结构:
```python
import torch
import torch.nn as nn
class VGGBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels, activation=nn.ReLU):
super(VGGBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(middle_channels)
self.activation = activation()
self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
out = self.bn2(out)
return out
class ResidualBlock(nn.Module):
def __init__(self, channels, activation=nn.ReLU):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.activation = activation()
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
return out
class Network(nn.Module):
def __init__(self, num_classes=10):
super(Network, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.activation = nn.ReLU()
self.vgg_block1 = VGGBlock(64, 128, 128)
self.vgg_block2 = VGGBlock(128, 256, 256)
self.residual_block = ResidualBlock(256)
self.fc = nn.Linear(256 * 8 * 8, num_classes)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.activation(out)
out = self.
阅读全文