def plot _ pred ( dv _ set , model , device , lim =35., preds = None , targetsNone ): if preds is Mone or targets is Mone : model . eval () preds , targets =[],[] for x , y in dv _ set : x , y = x . to ( device ), y . to ( device ) with torch . no _ grad (): pred = model ( x ) preds . append ( pred . detach (). cpu ()) targets . append ( y . detach (). cpu ()) preds = torch . cat ( preds , dim =0). numpy () targets = torch . cat ( targets , dim =0). numpy ()
时间: 2024-04-09 21:33:21 浏览: 152
这段代码存在一些错误,我来帮你修正一下:
```python
def plot_pred(dv_set, model, device, lim=35., preds=None, targets=None):
if preds is None or targets is None:
model.eval()
preds, targets = [], []
for x, y in dv_set:
x, y = x.to(device), y.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
targets.append(y.detach().cpu())
preds = torch.cat(preds, dim=0).numpy()
targets = torch.cat(targets, dim=0).numpy()
# 绘制图形的代码缺失,你可以在这里添加绘图的相关代码
# 返回预测值和目标值
return preds, targets
```
修正后的代码将原来缺失的绘图代码部分注释掉了,你可以在这里添加你希望使用的绘图代码。同时,我添加了一个返回语句,这样函数可以返回预测值和目标值给调用者。
请注意,由于缺失了绘图代码,你需要根据你的需求添加合适的绘图逻辑来完成预测结果的可视化。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)