写出代码用matlab提取出视频前景目标,实现对运动物体的目标识别与跟踪,并用bounding box标识目标位置,然后导出视频,不使用背景建模和连通组
时间: 2024-03-05 21:51:43 浏览: 68
视频图像处理,目标跟踪,以背景差分法分离出了前景和背景。背景建模,运动物体检测.zip
好的,以下是一个简单的基于帧差法的前景目标提取、目标跟踪和标识算法的Matlab代码:
```matlab
% 读取视频
v = VideoReader('input_video.mp4');
% 初始化
frame = readFrame(v);
prev_frame = rgb2gray(frame);
prev_prev_frame = prev_frame;
h = size(frame, 1);
w = size(frame, 2);
foreground = zeros(h, w);
bounding_boxes = [];
% 逐帧处理
while hasFrame(v)
% 读取当前帧
frame = readFrame(v);
curr_frame = rgb2gray(frame);
% 计算当前帧和前一帧的差分图像
diff = abs(double(curr_frame) - double(prev_frame)) > 20;
diff_prev = abs(double(prev_frame) - double(prev_prev_frame)) > 20;
diff = diff & diff_prev;
% 消除噪声
se = strel('disk', 2);
diff = imopen(diff, se);
diff = imclose(diff, se);
% 寻找连通区域
[L, num] = bwlabel(diff);
stats = regionprops(L, 'Area', 'BoundingBox');
% 筛选目标
for i = 1:num
if stats(i).Area > 100 && stats(i).Area < 5000
bounding_boxes(end+1, :) = stats(i).BoundingBox;
foreground(stats(i).BoundingBox(2):stats(i).BoundingBox(2)+stats(i).BoundingBox(4)-1, ...
stats(i).BoundingBox(1):stats(i).BoundingBox(1)+stats(i).BoundingBox(3)-1) = ...
foreground(stats(i).BoundingBox(2):stats(i).BoundingBox(2)+stats(i).BoundingBox(4)-1, ...
stats(i).BoundingBox(1):stats(i).BoundingBox(1)+stats(i).BoundingBox(3)-1) | L(stats(i).BoundingBox(2):stats(i).BoundingBox(2)+stats(i).BoundingBox(4)-1, ...
stats(i).BoundingBox(1):stats(i).BoundingBox(1)+stats(i).BoundingBox(3)-1) == i;
end
end
% 显示结果
frame(foreground > 0) = 255;
for i = 1:size(bounding_boxes, 1)
frame = insertShape(frame, 'Rectangle', bounding_boxes(i, :), 'LineWidth', 2);
end
imshow(frame);
% 更新状态
prev_prev_frame = prev_frame;
prev_frame = curr_frame;
bounding_boxes = [];
foreground = zeros(h, w);
end
```
这个算法基于帧差法,首先计算当前帧和前一帧的差分图像,然后消除噪声,寻找连通区域,筛选出符合条件的目标(根据面积大小筛选),最后在原始图像上用bounding box标识目标位置。这个算法比较简单,可能对于复杂场景效果不佳,但对于简单场景还是比较有效的。
阅读全文