PyTorch 中使用Diffusion model代码举例
时间: 2024-03-11 09:50:20 浏览: 150
下面是一个使用 PyTorch 实现 Diffusion model 的示例代码,用于图像生成任务:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 定义 Diffusion model 的参数
timesteps = 1000
noise_scale = 0.1
# 定义数据集和数据加载器
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# 定义模型和优化器
class DiffusionModel(nn.Module):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(1024, 512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.ConvTranspose2d(16, 1, kernel_size=3, stride=1, padding=1),
nn.Tanh()
)
def forward(self, x):
z = self.encoder(x)
x = self.decoder(z)
return x, z
model = DiffusionModel().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
# 定义损失函数
def diff_loss(x, x0, t):
noise = torch.randn_like(x)
noise = noise * torch.sqrt(t) * noise_scale
x1 = (1 - t) * x0 + noise
nll = ((x1 - x) ** 2).mean() / (2 * noise_scale ** 2)
return nll
# 训练模型
writer = SummaryWriter()
for epoch in range(10):
for i, (x, _) in enumerate(train_loader):
x = x.to(device)
optimizer.zero_grad()
x0 = x + noise_scale * torch.randn_like(x)
x0 = x0.clamp(-1, 1)
t = torch.rand(x.size(0), device=device) * timesteps
loss = diff_loss(x, x0, t)
loss.backward()
optimizer.step()
writer.add_scalar('loss', loss.item(), epoch * len(train_loader) + i)
if i % 100 == 0:
print(f'Epoch {epoch}, Iteration {i}, Loss {loss.item()}')
```
在上面的代码中,我们首先定义了 Diffusion model 的相关参数,包括迭代次数和噪声大小。然后加载 MNIST 数据集,并定义了模型和优化器。接着,我们定义了损失函数 diff_loss,该函数采用了噪声扩散和反演过程,并计算了负对数似然损失。最后,我们使用 PyTorch 提供的 DataLoader 进行训练,并记录了训练过程中的损失值。
阅读全文