model = init_detector(args.config, args.checkpoint, device=args.device)
时间: 2024-06-07 12:09:49 浏览: 175
这段代码是使用 mmdetection 库中的函数 `init_detector` 来初始化一个检测模型。其中,`args.config` 是指定的模型配置文件路径,`args.checkpoint` 是指定的模型权重文件路径,`args.device` 是指定的运行设备(如 CPU 或 GPU)。该函数会将配置文件和权重文件加载进内存,并根据设备类型构建相应的 PyTorch 模型对象。
相关问题
Traceback (most recent call last): File "DT_001_X01_P01.py", line 150, in DT_001_X01_P01.Module.load_model File "/home/kejia/Server/tf/Bin_x64/DeepLearning/DL_Lib_02/mmdet/apis/inference.py", line 42, in init_detector checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc) File "/home/kejia/Server/tf/Bin_x64/DeepLearning/DL_Lib_02/mmcv/runner/checkpoint.py", line 529, in load_checkpoint checkpoint = _load_checkpoint(filename, map_location, logger) File "/home/kejia/Server/tf/Bin_x64/DeepLearning/DL_Lib_02/mmcv/runner/checkpoint.py", line 467, in _load_checkpoint return CheckpointLoader.load_checkpoint(filename, map_location, logger) File "/home/kejia/Server/tf/Bin_x64/DeepLearning/DL_Lib_02/mmcv/runner/checkpoint.py", line 244, in load_checkpoint return checkpoint_loader(filename, map_location) File "/home/kejia/Server/tf/Bin_x64/DeepLearning/DL_Lib_02/mmcv/runner/checkpoint.py", line 261, in load_from_local checkpoint = torch.load(filename, map_location=map_location) File "torch/serialization.py", line 594, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "torch/serialization.py", line 853, in _load result = unpickler.load() File "torch/serialization.py", line 845, in persistent_load load_tensor(data_type, size, key, _maybe_decode_ascii(location)) File "torch/serialization.py", line 834, in load_tensor loaded_storages[key] = restore_location(storage, location) File "torch/serialization.py", line 175, in default_restore_location result = fn(storage, location) File "torch/serialization.py", line 157, in _cuda_deserialize return obj.cuda(device) File "torch/_utils.py", line 71, in _cuda with torch.cuda.device(device): File "torch/cuda/__init__.py", line 225, in __enter__ self.prev_idx = torch._C._cuda_getDevice() File "torch/cuda/__init__.py", line 164, in _lazy_init "Cannot re-initialize CUDA in forked subprocess. " + msg) RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method ('异常抛出', None) DT_001_X01_P01 load_model ret=1, version=V1.0.0.0
根据你提供的错误信息,看起来是在使用多进程时遇到了 CUDA 初始化错误。错误信息中指出,无法在 fork 的子进程中重新初始化 CUDA。为了在多进程中使用 CUDA,你需要使用 'spawn' 启动方法。
你可以尝试在主模块中添加以下代码来设置 'spawn' 启动方法:
```python
import multiprocessing as mp
if __name__ == '__main__':
mp.set_start_method('spawn')
# 在这里编写你的主程序逻辑
```
将你的主程序逻辑放在 `if __name__ == '__main__':` 块中,并在该块中调用 `mp.set_start_method('spawn')` 来设置 'spawn' 启动方法。
在上述代码中,`mp.set_start_method('spawn')` 将设置 'spawn' 启动方法为当前进程的默认启动方法。这样,在创建子进程时就会使用 'spawn' 启动方法,避免 CUDA 初始化错误。
希望这个解决方案对你有所帮助。如果你还有其他问题,请随时提问。
ap = argparse.ArgumentParser() ap.add_argument('-f', '--face', type=str, default='face_detector', help='path to the face detector model') ap.add_argument('-m', '--model', type=str, default='mask_detector.model', help='path to trained face mask detector model') ap.add_argument('-c', '--confidence', type=float, default=0.5, help='min probability to filter weak detection') args = vars(ap.parse_args())
这段代码是使用 Python 中的 argparse 库来解析命令行参数。在这里,我们定义了三个参数:face、model 和 confidence。分别表示人脸检测器模型的路径、口罩检测器模型的路径和筛选弱检测的最小概率值。其中,type 表示参数的类型,default 表示参数默认值,help 表示参数的帮助信息。
在执行代码时,可以通过命令行传入这些参数的值,如:
python detect_mask_video.py --face face_detector --model mask_detector.model --confidence 0.5
其中,--face、--model 和 --confidence 分别表示 face、model 和 confidence 参数,后面跟着的值为其对应的实际值。
阅读全文