使用pytorch实现用shufflenet v2进行图像分类,使用labelimg数据集,并给出模型代码,训练代码,并描述整个过程
时间: 2023-08-06 15:02:49 浏览: 229
利用pytorch实现图像分类
1. 数据准备
首先,需要准备一个图像分类的数据集。在本例中,我们使用了labelimg数据集。
2. 模型选择
接下来,选择适合数据集的深度学习模型。在本例中,我们选择使用shufflenet v2模型。
3. 模型代码
下面是使用pytorch实现的shufflenet v2模型代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ShuffleUnit(nn.Module):
def __init__(self, in_channels, out_channels, groups=3, stride=1):
super(ShuffleUnit, self).__init__()
mid_channels = out_channels // 4
self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=1,
groups=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(mid_channels)
self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=3,
groups=groups, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(mid_channels)
self.conv3 = nn.Conv2d(mid_channels, out_channels, kernel_size=1,
groups=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1,
groups=1, stride=stride, padding=0, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
shortcut = self.shortcut(x)
out = F.relu(torch.cat([out, shortcut], dim=1))
return out
class ShuffleNetV2(nn.Module):
def __init__(self, input_size=224, n_class=1000, scale_factor=1.0):
super(ShuffleNetV2, self).__init__()
assert input_size % 32 == 0
self.scale_factor = scale_factor
self.stage_repeats = [4, 8, 4]
self.stage_out_channels = [24, 116, 232, 464, 1024]
if self.scale_factor != 1.0:
self.stage_out_channels = [int(c * self.scale_factor) for c in self.stage_out_channels]
self.conv1 = nn.Conv2d(3, 24, kernel_size=3,
groups=1, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(24)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.stage2 = self._make_stage(2, stride=2)
self.stage3 = self._make_stage(3, stride=2)
self.stage4 = self._make_stage(4, stride=2)
self.globalpool = nn.AvgPool2d(int(input_size / 32))
self.fc = nn.Linear(self.stage_out_channels[-1], n_class)
def _make_stage(self, stage, stride):
modules = OrderedDict()
stage_name = "ShuffleUnit_Stage{}".format(stage)
previous_channels = self.stage_out_channels[stage - 2]
current_channels = self.stage_out_channels[stage - 1]
for i in range(self.stage_repeats[stage - 2]):
if i == 0:
modules[stage_name + "_{}".format(i)] = ShuffleUnit(
previous_channels, current_channels, stride=stride)
else:
modules[stage_name + "_{}".format(i)] = ShuffleUnit(
current_channels, current_channels, stride=1)
return nn.Sequential(modules)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.globalpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
4. 训练代码
接下来,编写训练代码。在本例中,我们使用交叉熵损失函数,并使用Adam优化器进行模型优化。
```python
import torch.optim as optim
from torch.utils.data import DataLoader
# 定义超参数
batch_size = 32
learning_rate = 0.001
epochs = 10
# 加载数据集
dataset = MyDataset()
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义模型、损失函数和优化器
model = ShuffleNetV2().cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(dataloader, 0):
inputs, labels = data
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' %
(epoch + 1, running_loss / len(dataloader)))
print('Finished Training')
```
5. 整个过程
整个过程如下:
1. 准备数据集(labelimg数据集)。
2. 选择适合数据集的深度学习模型(shufflenet v2)。
3. 编写模型代码(pytorch实现的shufflenet v2模型代码)。
4. 编写训练代码(使用交叉熵损失函数和Adam优化器进行模型优化)。
5. 训练模型,输出训练损失。
6. 完成训练,得到训练好的模型,可以对新的图片进行分类预测。
阅读全文