python电池soc预测
时间: 2025-02-22 08:24:54 浏览: 61
使用Python实现电池SOC预测的方法及模型
基于Basisformer的时间序列锂离子电池SOC预测
为了实现基于Basisformer的时间序列锂离子电池SOC预测,可以采用深度学习框架PyTorch。此方法旨在利用Basisformer模型对锂离子电池的SOC进行准确预测,从而提高电池使用效率并优化能源管理系统[^2]。
以下是具体的实现过程:
- 准备环境
安装必要的库:
pip install torch torchvision torchaudio pandas numpy matplotlib scikit-learn
加载所需模块:
import torch
from torch import nn, optim
import torch.nn.functional as F
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
- 数据预处理
读取和清理数据集,并对其进行标准化处理以便更好地训练神经网络:
def load_and_preprocess_data(file_path):
df = pd.read_csv(file_path)
scaler = MinMaxScaler(feature_range=(-1, 1))
scaled_features = scaler.fit_transform(df[['voltage', 'current', 'temperature']])
df_scaled = pd.DataFrame(scaled_features, columns=['voltage', 'current', 'temperature'])
return df_scaled.values, scaler
data, scaler = load_and_preprocess_data('battery_data.csv')
- 构建Basisformer模型结构
定义自定义层MultiHeadAttentionLayer
以及完整的Transformer编码器架构:
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, hid_dim, n_heads, dropout, device):
super().__init__()
self.hid_dim = hid_dim
self.n_heads = n_heads
assert hid_dim % n_heads == 0
self.w_q = nn.Linear(hid_dim, hid_dim)
self.w_k = nn.Linear(hid_dim, hid_dim)
self.w_v = nn.Linear(hid_dim, hid_dim)
self.fc_o = nn.Linear(hid_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
batch_size = query.shape[0]
Q = self.w_q(query)
K = self.w_k(key)
V = self.w_v(value)
# ... (省略部分代码) ...
class TransformerEncoder(nn.Module):
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length=100):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
self.pos_embedding = nn.Embedding(max_length, hid_dim)
self.layers = nn.ModuleList([EncoderLayer(hid_dim,
n_heads,
pf_dim,
dropout,
device)
for _ in range(n_layers)])
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, src, src_mask):
# ... (省略部分代码) ...
model = TransformerEncoder(
input_dim=data.shape[-1],
hid_dim=512,
n_layers=6,
n_heads=8,
pf_dim=2048,
dropout=0.1,
device=device
).to(device)
- 训练与评估
编写函数用于分割训练/测试集、创建批次迭代器、定义损失函数和优化器,并执行实际的训练循环:
train_ratio = 0.7
split_index = int(len(data)*train_ratio)
X_train, X_test = data[:split_index], data[split_index:]
y_train, y_test = data[:split_index,-1:], data[split_index:,-1:]
batch_size = 64
dataset = TensorDataset(X_train, y_train)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(epochs):
model.train()
running_loss = []
for i, (inputs, labels) in enumerate(dataloader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs.unsqueeze(-1)).squeeze(-1)
loss = criterion(outputs, labels.float())
loss.backward()
optimizer.step()
running_loss.append(loss.item())
avg_loss = sum(running_loss)/len(running_loss)
print(f'Epoch {epoch}, Loss: {avg_loss}')
- 结果可视化
绘制预测值对比真实值图表以直观展示模型性能:
with torch.no_grad():
predictions = []
test_inputs = X_test.clone().detach().float().unsqueeze(-1).to(device)
predicted_output = model(test_inputs).cpu().numpy()
plt.figure(figsize=(10,6))
plt.plot(y_test.flatten(), label='Actual SOC')
plt.plot(predicted_output.flatten(), label='Predicted SOC')
plt.legend(loc="upper left")
plt.show()
相关推荐

















