请详细说明如何使用层次分析法构建决策模型,并提供相应的Python代码实现。
时间: 2024-11-05 17:18:03 浏览: 43
层次分析法(AHP)是一种通过结构化层次模型将复杂决策分解为多个部分的方法,它广泛应用于决策分析和问题解决。要使用AHP构建决策模型,首先要定义决策目标、评估标准以及可能的决策方案。然后,通过成对比较的方式为各层次的元素赋予相对重要性权重。权重的计算通常涉及求解成对比较矩阵的特征值问题,并进行一致性检验以确保结果的可靠性。在Python中实现AHP算法,可以采用NumPy等科学计算库来处理矩阵运算。
参考资源链接:[掌握数学建模:层次分析法详细案例解析](https://wenku.csdn.net/doc/mh8oaewxcq?spm=1055.2569.3001.10343)
以下是一个简化的Python代码示例,用于实现AHP算法的权重计算和一致性检验:
```python
import numpy as np
# 定义成对比较矩阵
comparison_matrix = np.array([
[1, 1/3, 5],
[3, 1, 7],
[1/5, 1/7, 1]
])
# 计算权重(特征向量)
eigvals, eigvecs = np.linalg.eig(comparison_matrix)
max_eigval = np.max(eigvals)
max_eigvec = eigvecs[:, np.argmax(eigvals)].real
weights = max_eigvec / np.sum(max_eigvec)
# 计算一致性指标CI(Consistency Index)
n = comparison_matrix.shape[0]
CI = (max_eigval - n) / (n - 1)
# 平均随机一致性指数RI(Random Index)
RI = [0, 0, 0.58, 0.90, 1.12, 1.24, 1.32, 1.41, 1.45]
# 计算一致性比率CR(Consistency Ratio)
CR = CI / RI[n-1]
# 输出结果
print(
参考资源链接:[掌握数学建模:层次分析法详细案例解析](https://wenku.csdn.net/doc/mh8oaewxcq?spm=1055.2569.3001.10343)
阅读全文
相关推荐













