遗传算法matlab程序
时间: 2023-07-24 19:04:20 浏览: 140
genetic2_遗传算法——matlab程序_
5星 · 资源好评率100%
以下是一个简单的遗传算法MATLAB程序示例:
```matlab
% 遗传算法MATLAB程序示例
clear all;
% 定义遗传算法的参数
popSize = 50; % 种群大小
numVars = 10; % 变量数目
numGen = 100; % 迭代次数
crossoverProb = 0.8; % 交叉概率
mutationProb = 0.02; % 变异概率
% 初始化种群
pop = rand(popSize, numVars);
% 开始迭代
for i = 1:numGen
% 计算适应度
fitness = sum(pop, 2);
% 选择
idx = randsample(popSize, popSize, true, fitness);
newPop = pop(idx, :);
% 交叉
for j = 1:2:popSize
if rand < crossoverProb
k = randi(numVars);
temp = newPop(j, k:end);
newPop(j, k:end) = newPop(j+1, k:end);
newPop(j+1, k:end) = temp;
end
end
% 变异
for j = 1:popSize
if rand < mutationProb
k = randi(numVars);
newPop(j, k) = rand;
end
end
% 更新种群
pop = newPop;
end
% 输出最优解
[~, idx] = max(sum(pop, 2));
disp(['最优解:', num2str(pop(idx, :))]);
```
这个示例程序演示了如何使用遗传算法来求解一个简单的优化问题。在这个问题中,我们要最大化一个包含10个变量的向量的元素之和。程序初始化一个包含50个随机生成的向量的种群,并在每一代中执行选择、交叉和变异操作,来产生下一代种群。程序最后输出最优解(即元素之和最大的向量)。请注意,这只是一个简单的示例程序,实际应用中需要根据具体问题进行调整和优化。
阅读全文