def transform_fn(sample, eps=1e-7): data, mask = sample data = (data.to(torch.float) / 127.) - 1. mask = mask.to(torch.float) return data, mask是什么意思
时间: 2024-04-19 15:25:46 浏览: 129
这段代码定义了一个名为 `transform_fn` 的函数,该函数接受一个样本 `sample` 和一个可选参数 `eps`。
函数的功能是对输入的样本进行转换。转换过程如下:
1. 将输入的样本拆分为 `data` 和 `mask` 两个部分,分别赋值给变量 `data` 和 `mask`。
2. 将 `data` 张量的数据类型转换为 `torch.float`,然后将其除以 127,并减去 1。这个操作的目的是将数据归一化到 -1 到 1 的范围内。
3. 将 `mask` 张量的数据类型转换为 `torch.float`。
4. 返回经过转换后的 `data` 和 `mask`。
总结来说,这个函数的作用是对输入的样本进行数据类型转换和归一化处理,然后返回转换后的结果。这种数据转换常用于机器学习任务中,以便对数据进行预处理或者适应模型的输入要求。
相关问题
class Dn_datasets(Dataset): def __init__(self, data_root, data_dict, transform, load_all=False, to_gray=False, s_factor=1, repeat_crop=1): self.data_root = data_root self.transform = transform self.load_all = load_all self.to_gray = to_gray self.repeat_crop = repeat_crop if self.load_all is False: self.data_dict = data_dict else: self.data_dict = [] for sample_info in data_dict: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))).copy() if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') width = sample_info['width'] height = sample_info['height'] sample = { 'data': sample_data, 'width': width, 'height': height } self.data_dict.append(sample) def __len__(self): return len(self.data_dict) def __getitem__(self, idx): sample_info = self.data_dict[idx] if self.load_all is False: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))) if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') else: sample_data = sample_info['data'] if self.to_gray: sample_data = sample_data.convert('L') # crop (w_start, h_start, w_end, h_end) image = sample_data target = sample_data sample = {'image': image, 'target': target} if self.repeat_crop != 1: image_stacks = [] target_stacks = [] for i in range(self.repeat_crop): sample_patch = self.transform(sample) image_stacks.append(sample_patch['image']) target_stacks.append(sample_patch['target']) return torch.stack(image_stacks), torch.stack(target_stacks) else: sample = self.transform(sample) return sample['image'], sample['target']
这段代码是用来创建一个自定义的 PyTorch 数据集类,名为 Dn_datasets。它的构造函数接受四个参数:data_root,data_dict,transform 和 load_all。其中,data_root 是数据集的根目录,data_dict 是一个字典,包含了数据集中每个样本的路径、宽度和高度等信息,transform 是一个用于数据增强的 torchvision.transforms 实例,load_all 是一个布尔值,指示是否将整个数据集加载到内存中。
在 __init__ 函数中,如果 load_all 是 False,那么 self.data_dict 直接赋值为传入的 data_dict;否则,它会遍历 data_dict 中的每个样本,将其加载到内存中,并将其图像数据、宽度和高度信息封装为一个字典,并将其存储到 self.data_dict 中。
__len__ 函数返回数据集的样本数量,__getitem__ 函数接受一个索引 idx,返回该索引对应的样本。如果 load_all 是 False,那么它会从磁盘上读取该样本的图像数据;否则,它会从 self.data_dict 中读取该样本的图像数据。如果 to_gray 是 True,那么它会将图像转换为灰度图。最后,如果 repeat_crop 大于 1,那么它会对该样本进行多次裁剪,并返回多个图像和目标对作为一个元组;否则,它会对该样本进行单次裁剪,并返回一个图像和目标对作为一个元组。
import torch from torch.utils.data import Dataset from tools import ReadIntArray, OneHotData class SSQDataset(Dataset): def __init__(self, file_path, my_detection, sample_nums): self.file_path = file_path self.my_detection = my_detection self.sample_nums = sample_nums self.my_list = ReadIntArray(self.file_path) def __getitem__(self, my_index): data_list = [] target_list = [] start_index = my_index for sample_num in range(self.sample_nums): data_list.append(self.my_list[start_index + sample_num]) if self.my_detection in self.my_list[start_index + self.sample_nums]: target_list = [1, 0] else: target_list = [0, 1] data_list = OneHotData(data_list) data_list = torch.tensor(data_list, dtype=torch.float32) target_list = torch.tensor(target_list, dtype=torch.float32) return data_list, target_list def __len__(self): return len(self.my_list) - self.sample_nums
这段代码定义了一个名为SSQDataset的数据集类,用于读取文件并将其转换为模型可接受的数据格式。其中:
- `file_path`表示数据文件路径;
- `my_detection`表示要检测的目标,例如在双色球中是要预测的红球还是蓝球;
- `sample_nums`表示每个样本中包含的数据点数;
- `ReadIntArray`函数用于读取数据文件并将其转换为整数列表;
- `__getitem__`函数用于获取某个索引位置的数据,并将其转换为模型可接受的数据格式,同时将该数据对应的目标标签也转换为模型可接受的格式;
- `OneHotData`函数用于将原始数据转换为独热编码格式;
- `__len__`函数用于返回数据集的长度。
这个数据集类可以用于训练模型,例如:
```python
from torch.utils.data import DataLoader
from model import MyModel
dataset = SSQDataset(file_path='data/ssq.txt', my_detection='red', sample_nums=5)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
model = MyModel()
for data, target in dataloader:
output = model(data)
loss = compute_loss(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
这里假设模型类为`MyModel`,使用PyTorch内置的`DataLoader`类将数据集分成批次进行训练。在每个批次中,将数据输入模型,计算损失并进行反向传播和优化。
阅读全文