tversky loss
时间: 2023-09-24 22:12:45 浏览: 166
Tversky损失函数是一种用于计算目标检测任务中的损失的方法。它基于Tversky相似性指数,该指数是骰子相似系数和Fβ得分的推广。Tversky损失函数的目的是在训练高度不平衡的数据时,更加关注假阴性的情况,以平衡精确性和召回率。\[1\]
Tversky损失函数的实现代码如下:
```python
def tversky_loss(inputs, targets, beta=0.7, weights=None):
batch_size = targets.size(0)
loss = 0.0
for i in range(batch_size):
prob = inputs\[i\]
ref = targets\[i\]
alpha = 1.0-beta
tp = (ref*prob).sum()
fp = ((1-ref)*prob).sum()
fn = (ref*(1-prob)).sum()
tversky = tp/(tp + alpha*fp + beta*fn)
loss = loss + (1-tversky)
return loss/batch_size
```
该函数接受输入和目标张量,并计算Tversky损失。其中,inputs是模型的输出,targets是真实的目标标签。beta是Tversky指数的参数,用于平衡精确性和召回率。weights是一个可选的权重张量,用于对不同类别的样本进行加权处理。\[1\]
另外,还有一种与Tversky损失函数相关的Dice Loss。Dice Loss是precision和recall的调和平均值,对FPs和FNs的权重相等。为了更好地权衡精确性和召回率,可以使用基于Tversky相似性指数的损失层。\[2\]这种方法可以通过调整超参数来适应不同的训练需求,特别是在处理高度不平衡的数据时。\[3\]
#### 引用[.reference_title]
- *1* [Pytorch tversky损失函数](https://blog.csdn.net/u014687517/article/details/90216095)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [分割网络损失函数总结!交叉熵,Focal loss,Dice,iou,TverskyLoss!](https://blog.csdn.net/jijiarenxiaoyudi/article/details/128360405)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [医学图像分割之--Tversky Loss](https://blog.csdn.net/weixin_43921949/article/details/127708702)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文