多目标遗传算法 matlab代码
时间: 2023-09-16 14:13:31 浏览: 287
遗传算法是一种常用的优化算法,用于解决多目标优化问题。在Matlab中,可以使用多种方式实现多目标遗传算法。以下是一个简单的示例代码:
```matlab
% 定义问题参数
nVar = 10; % 变量个数
nObj = 2; % 目标个数
VarSize = [1 nVar]; % 变量维度
% 定义遗传算法参数
MaxIt = 100; % 最大迭代次数
nPop = 50; % 种群大小
pc = 0.8; % 交叉概率
nc = 2*round(pc*nPop/2); % 交叉个体数
pm = 0.3; % 变异概率
nm = round(pm*nPop); % 变异个体数
% 初始化种群
empty_individual.Position = [];
empty_individual.Cost = [];
pop = repmat(empty_individual, nPop, 1);
for i = 1:nPop
pop(i).Position = unifrnd(-5, 5, VarSize);
pop(i).Cost = YourCostFunction(pop(i).Position); % 计算个体适应度值
end
% 进化循环
for it = 1:MaxIt
% 生成子代种群
offspring = repmat(empty_individual, nPop, 1);
for k = 1:2:nPop
% 选择父代个体
p1 = TournamentSelection(pop);
p2 = TournamentSelection(pop);
% 交叉
[offspring(k).Position, offspring(k+1).Position] = ...
crossover(p1.Position, p2.Position);
% 变异
offspring(k).Position = mutate(offspring(k).Position);
offspring(k+1).Position = mutate(offspring(k+1).Position);
% 计算子代适应度值
offspring(k).Cost = YourCostFunction(offspring(k).Position);
offspring(k+1).Cost = YourCostFunction(offspring(k+1).Position);
end
% 合并父代和子代种群
temp_pop = [pop; offspring];
% 非支配排序
fronts = NonDominatedSorting(temp_pop);
% 计算拥挤度距离
temp_pop = CalcCrowdingDistance(temp_pop, fronts);
% 选择下一代种群
pop = EnvironmentalSelection(temp_pop, nPop);
end
% 输出最优解
best_solution = pop(1);
disp(['Best Objective 1: ' num2str(best_solution.Cost(1))]);
disp(['Best Objective 2: ' num2str(best_solution.Cost(2))]);
% 定义交叉操作函数
function [child1, child2] = crossover(parent1, parent2)
alpha = rand(size(parent1));
child1 = alpha.*parent1 + (1-alpha).*parent2;
child2 = alpha.*parent2 + (1-alpha).*parent1;
end
% 定义变异操作函数
function mutated = mutate(solution)
sigma = 0.1*(max(solution)-min(solution)); % 变异幅度
mutated = solution + sigma.*randn(size(solution));
end
% 定义计算适应度函数
function cost = YourCostFunction(solution)
% 这里替换为你的目标函数计算方法,返回一个包含所有目标值的向量
% cost = [obj1, obj2, ..., objN]
% 例如:
% cost = [solution(1)^2, solution(2)^2];
end
% 定义锦标赛选择操作函数
function winner = TournamentSelection(pop)
k = 2; % 锦标赛规模
nPop = size(pop, 1);
indices = randperm(nPop, k);
tournament_pop = pop(indices);
[~, idx] = min([tournament_pop.Cost]); % 选择适应度最小的个体
winner = tournament_pop(idx);
end
% 定义非支配排序函数
function fronts = NonDominatedSorting(pop)
nPop = size(pop, 1);
S = cell(nPop, 1);
n = zeros(nPop, 1);
rank = zeros(nPop, 1);
for i = 1:nPop
S{i} = [];
n(i) = 0;
for j = 1:nPop
if i == j
continue;
end
if dominates(pop(i), pop(j))
S{i} = [S{i} j];
elseif dominates(pop(j), pop(i))
n(i) = n(i) + 1;
end
end
if n(i) == 0
rank(i) = 1;
end
end
iFront = 1;
fronts = {};
while true
if isempty(find(rank == iFront, 1))
break;
end
front = find(rank == iFront);
for i = front
for j = S{i}
n(j) = n(j) - 1;
if n(j) == 0
rank(j) = iFront + 1;
end
end
end
fronts{iFront} = front;
iFront = iFront + 1;
end
end
% 定义支配关系判断函数
function result = dominates(solution1, solution2)
cost1 = solution1.Cost;
cost2 = solution2.Cost;
result = all(cost1 <= cost2) && any(cost1 < cost2);
end
% 定义计算拥挤度距离函数
function pop = CalcCrowdingDistance(pop, fronts)
nPop = size(pop, 1);
nObj = numel(pop(1).Cost);
for k = 1:numel(fronts)
front = fronts{k};
nFront = numel(front);
% 初始化拥挤度距离
for i = front
pop(i).CrowdingDistance = 0;
end
% 计算每个目标的排序后数值
for j = 1:nObj
[~, idx] = sort([pop(front).Cost], 'ascend');
pop(front(idx(1))).CrowdingDistance = inf;
pop(front(idx(nFront))).CrowdingDistance = inf;
for i = 2:nFront-1
pop(front(idx(i))).CrowdingDistance = ...
pop(front(idx(i))).CrowdingDistance + ...
(pop(front(idx(i+1))).Cost(j) - pop(front(idx(i-1))).Cost(j)) / ...
(max([pop(front).Cost(j)]) - min([pop(front).Cost(j)]));
end
end
end
end
% 定义环境选择操作函数
function pop = EnvironmentalSelection(pop, nPop)
nObj = numel(pop(1).Cost);
% 计算总的适应度值
F = [pop.CrowdingDistance]';
F(isinf(F)) = 0;
total_fitness = sum(F);
% 计算每个个体的选择概率
p = F / total_fitness;
% 按照选择概率选择个体
pop = pop(RouletteWheelSelection(p, nPop));
end
% 定义轮盘赌选择操作函数
function idx = RouletteWheelSelection(p, n)
c = cumsum(p);
r = rand(n, 1);
[~, idx] = histc(r, [0; c]);
end
```
以上代码实现了一个简单的多目标遗传算法,你可以根据自己的具体问题进行相应的修改和扩展。
阅读全文