i2c.patch怎么安装
时间: 2024-11-20 20:38:41 浏览: 15
要安装`i2c.patch`,首先需要确保您下载的是`i2c.rar_freescale i2c_i2c`这个特定的I2C驱动程序包,它通常包含了针对MX1系列微控制器的补丁文件。这里是一般的步骤:
1. 解压压缩包[^2]:
```shell
unrar x i2c.rar
```
2. 找到`i2c.patch`文件,它可能位于解压后的目录中,如`i2c_i2c/drivers/i2c/patches/`。
3. 检查您的项目目录,看看是否有对应的MX1 I2C驱动源码。通常这些源码会在`drivers/i2c/freescale`或类似路径下。
4. 如果源代码在正确位置,应用补丁:
```shell
cd drivers/i2c/freescale
patch -p1 < ../i2c.patch
```
`-p1`表示从一级目录开始匹配,如果有多级目录结构,可能需要调整`-p`参数。
5. 完成补丁应用后,确认补丁已成功合并到源代码中。如果`patch`命令返回无错误信息,则说明安装完成。
6. 最后,编译并安装更新后的驱动,具体步骤取决于您的操作系统和开发环境。这通常涉及运行`make`和`make install`命令。
请注意,实际操作可能因具体环境和版本差异而有所不同。在执行这些步骤之前,请确保您已经熟悉了您的项目的构建流程以及所使用的工具。如有任何疑问,可以查阅项目文档或社区支持。
相关问题
import cv2 import matplotlib.pyplot as plt img=cv2.imread('D:/computer view/R-C.png')patch_img=img[20:150,-180:-50] cv2.imshow(patch_img)
As an AI language model, I cannot display images directly. However, I can suggest some modifications to your code to display the image using matplotlib.
Here's an updated version of your code:
```
import cv2
import matplotlib.pyplot as plt
# Read image
img = cv2.imread('D:/computer view/R-C.png')
# Extract patch
patch_img = img[20:150, -180:-50]
# Display image using matplotlib
plt.imshow(cv2.cvtColor(patch_img, cv2.COLOR_BGR2RGB))
plt.show()
```
This code will display the extracted patch using the `imshow` function of matplotlib. Note that we also need to convert the color space from BGR to RGB using the `cv2.cvtColor` function, as matplotlib expects RGB images.
void NCut::GetPatchFeature(const MatrixXf &points, MatrixXf *features_in) { MatrixXf &features = *features_in; const int num_points = static_cast<int>(points.rows()); const int dim = _patch_size * _patch_size; features.resize(num_points, dim); for (int i = 0; i < num_points; ++i) { // .1 patch int irow = 0; int jcol = 0; _ff_feature_grid.Pos2d(points.coeffRef(i, 0), points.coeffRef(i, 1), &irow, &jcol); cv::Mat patch; cv::Point2f pt(static_cast<float>(irow), static_cast<float>(jcol)); cv::getRectSubPix(_cv_feature_map, cv::Size(_patch_size, _patch_size), pt, patch); // .2 maybe later i will add other features based on patch // .3 add to features assert(dim == patch.rows * patch.cols); int p = 0; for (int r = 0; r < patch.rows; ++r) { for (int c = 0; c < patch.cols; ++c) { float val = patch.at<float>(r, c); features.coeffRef(i, p++) = static_cast<float>( (std::isnan(val) || std::isinf(val)) ? 1.e-50 : val); // features.coeffRef(i, p++) = patch.at<float>(r, c); } } } }
这段代码是用于计算NCut算法中的图像块的特征向量。给定一个点集points,对于每个点,首先通过_ff_feature_grid将其映射到_feature_map图像上,并取该点为中心的_patch_size * _patch_size大小的矩形区域作为图像块。然后,对于每个图像块,将像素值添加到特征向量中,特征向量的维度为_patch_size * _patch_size。在添加每个像素值时,如果该值为NaN或Inf,则设置为1.e-50。最终,返回一个特征向量矩阵features,其行数为points中点的个数,列数为_patch_size * _patch_size。
阅读全文