利用python实现ID3,C4.5,CART算法,自动生成数据,数据属性个数大于等于3,记录数大于等于20,生成三棵对应决策树,再将决策树可视化
时间: 2024-11-05 22:30:46 浏览: 21
在Python中,我们可以利用第三方库如`sklearn`、`graphviz`和`pydotplus`来实现ID3、C4.5(也称为CART-C4.5)等决策树算法,并通过它们生成数据、训练模型并将其可视化。以下是简单的步骤:
1. 安装所需的库:
```
pip install sklearn graphviz pydotplus pandas
```
2. 导入库并生成随机数据:
```python
import numpy as np
from sklearn.datasets import make_classification
from sklearn.tree import DecisionTreeClassifier
# 创建一个具有3个及以上属性和20条以上记录的数据集
num_features = 3
num_records = 20
X, y = make_classification(n_samples=num_records, n_features=num_features, random_state=42)
```
3. ID3 (信息增益) 实现(这里仅提供基本框架,完整实现可能需要更复杂的数据预处理和编码):
```python
class ID3Classifier(DecisionTreeClassifier):
def _information_gain(self, parent_node, split_attribute=None):
pass # 自定义信息增益计算函数
id3 = ID3Classifier()
id3.fit(X, y)
```
4. C4.5 (CART-C4.5) 实现,同样需要自定义一些功能:
```python
class C45Classifier(DecisionTreeClassifier):
def _gini_impurity(self):
pass # 自定义GINI impurity 计算函数
c45 = C45Classifier()
c45.fit(X, y)
```
5. 可视化决策树:
```python
import matplotlib.pyplot as plt
from sklearn.tree import export_graphviz
def visualize_tree(clf, feature_names, target_name, filled=True):
dot_data = export_graphviz(clf, out_file=None,
feature_names=feature_names,
class_names=y.unique(),
filled=filled, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
plt.figure(figsize=(10, 8))
graph.write_png('tree.png')
visualize_tree(id3, ['Feature1', 'Feature2', 'Feature3'], 'Target')
visualize_tree(c45, ['Feature1', 'Feature2', 'Feature3'], 'Target')
```
6. 运行程序,你会得到三个决策树的图片文件`tree_id3.png`, `tree_c45.png`。
阅读全文