用汇编语言编写一个软件延时1s的子程序

时间: 2024-10-16 11:17:40 浏览: 111
在汇编语言中编写一个简单的1秒延时子程序通常会利用操作系统提供的定时中断服务,例如8051系列单片机的定时器。这里以8051为例,提供了一个基本的延时子程序示例: ```assembly ; 定义定时器T0的初值 DELAY_TIMER equ 0x87 ; 延迟子程序 DELAY PROC ; 开启定时器T0,设工作模式1(16位自动重装) MOV TMOD, #0x01 ; 设置TMOD为0b0001,启用定时器T0 MOV TH0, DELAY_TIMER ; 设置TH0为初始计数值 SETB TR0 ; 启动定时器T0 ; 进入无限循环等待定时器溢出 DELAY_LOOP: SJMP DELAY_LOOP ; 永远跳转回此位置,直到定时器溢出 ; 当定时器T0溢出时,计数自动减到0,此时退出延时 RETI ; 返回主程序 DELAY ENDP ``` 这个子程序会在启动后开始定时,当定时器T0计满溢出时,大约需要1秒(实际时间取决于系统时钟频率)。注意,这只是一个基本示例,实际应用可能需要处理更复杂的中断处理流程。
相关问题

汇编语言延时1s子程序

汇编语言延时1s的子程序可以使用计时器和中断实现。具体步骤如下: 1. 初始化计时器。 2. 启动计时器。 3. 等待计时器中断。 4. 中断服务程序处理中断。 5. 判断计时器是否达到1s,如果是,清零计时器并退出子程序;如果不是,继续等待中断。 下面是一个简单的汇编语言延时1s子程序的示例代码: delay: mov cx, 0FFFFh ; 初始化计数器 mov dx, 0FFFFh mov ah, 86h ; 设置计时器 int 15h mov ah, 0 ; 启动计时器 int 15h wait: cmp byte ptr [timer_flag], 0 ; 判断计时器是否中断 je wait mov byte ptr [timer_flag], 0 ; 清零计时器标志 dec word ptr [cx] ; 计数器减1 jnz wait ; 继续等待中断 dec word ptr [dx] jnz wait ret 其中,timer_flag是一个标志位,用于记录计时器是否中断。在计时器中断服务程序中,需要将该标志位设置为1。

循环程序设计。软件延时子程序与指令执行时间有很大的关系,在使用12MHz晶振时,一个机器周期为1µs。如果软件延时10ms,请利用循环程序实现该延时。用汇编语言

在汇编语言中,可以利用循环计数的方式来实现延时,以下是一种实现方法: ``` DELAY_10MS: MOVLW 0x0A ; 设置循环计数为10 MOVWF COUNT ; COUNT为计数器,存放循环计数 DELAY_10MS_LOOP: MOVLW 0xC2 ; 设置内层循环计数为194,使总循环计数为12000 MOVWF INNER_COUNT ; INNER_COUNT为内层计数器 DELAY_10MS_LOOP_INNER: DECFSZ INNER_COUNT, F ; 内层计数减1 GOTO DELAY_10MS_LOOP_INNER ; 如果内层计数不为0,继续循环 DECFSZ COUNT, F ; 外层计数减1 GOTO DELAY_10MS_LOOP ; 如果外层计数不为0,继续循环 RETURN ; 延时完成,返回 COUNT EQU 0x20 ; 计数器的存储地址 INNER_COUNT EQU 0x21 ; 内层计数器的存储地址 ``` 在上述代码中,我们使用MOVLW指令将循环计数和内层循环计数设置为10和194,使得总共循环12000次,每次循环的耗时为1个机器周期,从而实现10ms的延时。在每次循环中,我们使用DECFSZ指令将计数器减1,如果计数器不为0,则使用GOTO指令跳转到下一个循环。当外层计数器和内层计数器都为0时,表示延时完成,使用RETURN指令返回。 需要注意的是,在实际编程中,要根据具体的处理器性能和晶振频率进行调整。另外,在使用汇编语言时,需要考虑指令的执行时间和大小,以充分利用CPU的性能。
阅读全文

相关推荐

最新推荐

recommend-type

51驱动数码管原理图(共阳)及汇编程序

`DELAY`子程序是一个简单的延时函数,通过三级循环(R7、R6、R5)实现约0.2秒的延迟。这种延时方法虽然不精确,但对于演示目的来说已经足够。 编码表`TABLE`包含了共阳型数码管每个数字的段码,例如0对应的编码是0C...
recommend-type

基于单片机汽车防盗器报警声的源程序

程序的编写采用的是汇编语言,配置了单片机的初始状态,例如关闭代码保护,禁用看门狗定时器,开启上电延时器,并设定振荡器模式为XT。程序中定义了一些关键的寄存器,如RTCC、PC、STATUS等,以及用于控制声音的变量...
recommend-type

AT89S51单片机C语言程序范例

为了实现0.2秒的延时,程序设计了延时子程序,利用循环计数的方式,结合单片机的机器周期计算出所需的时间。例如,通过设置R6和R7的值,可以调整延时的长度,以满足不同时间间隔的需求。 第二个实验是模拟开关灯,...
recommend-type

51单片机简单实例 包括硬件,编程有汇编和C语言

在描述中给出的延时子程序`delay02s(void)`是用于产生约0.2秒的延迟,这是通过嵌套循环实现的。循环次数的计算基于特定的时钟周期和处理器速度。这种方法简单但不够精确,适用于对延时要求不高的场合。 接下来,...
recommend-type

SqlSugar 是 .NET 开源 ORM 框架,由 Fructose 大数据技术团队维护和更新,是开箱即用的最易用的 ORM 优点:低代码,高性能,超级简单,功能全面、多数据

此ORM是一款创业神器【支持几十种数据库】+【只需一套代码】+【真正强类型零SQL超爽】+【低代码支持】+【建库和表】+【多租户】+【跨库】+【分表】+【MIT协议】 支持库有:MySql SqlServer Postgresql Oracle Sqlite ClickHouse GaussDB TDengine OceanBase OpenGauss Tidb 达梦、人大金仓等
recommend-type

Raspberry Pi OpenCL驱动程序安装与QEMU仿真指南

资源摘要信息:"RaspberryPi-OpenCL驱动程序" 知识点一:Raspberry Pi与OpenCL Raspberry Pi是一系列低成本、高能力的单板计算机,由Raspberry Pi基金会开发。这些单板计算机通常用于教育、电子原型设计和家用服务器。而OpenCL(Open Computing Language)是一种用于编写程序,这些程序可以在不同种类的处理器(包括CPU、GPU和其他处理器)上执行的标准。OpenCL驱动程序是为Raspberry Pi上的应用程序提供支持,使其能够充分利用板载硬件加速功能,进行并行计算。 知识点二:调整Raspberry Pi映像大小 在准备Raspberry Pi的操作系统映像以便在QEMU仿真器中使用时,我们经常需要调整映像的大小以适应仿真环境或为了确保未来可以进行系统升级而留出足够的空间。这涉及到使用工具来扩展映像文件,以增加可用的磁盘空间。在描述中提到的命令包括使用`qemu-img`工具来扩展映像文件`2021-01-11-raspios-buster-armhf-lite.img`的大小。 知识点三:使用QEMU进行仿真 QEMU是一个通用的开源机器模拟器和虚拟化器,它能够在一台计算机上模拟另一台计算机。它可以运行在不同的操作系统上,并且能够模拟多种不同的硬件设备。在Raspberry Pi的上下文中,QEMU能够被用来模拟Raspberry Pi硬件,允许开发者在没有实际硬件的情况下测试软件。描述中给出了安装QEMU的命令行指令,并建议更新系统软件包后安装QEMU。 知识点四:管理磁盘分区 描述中提到了使用`fdisk`命令来检查磁盘分区,这是Linux系统中用于查看和修改磁盘分区表的工具。在进行映像调整大小的过程中,了解当前的磁盘分区状态是十分重要的,以确保不会对现有的数据造成损害。在确定需要增加映像大小后,通过指定的参数可以将映像文件的大小增加6GB。 知识点五:Raspbian Pi OS映像 Raspbian是Raspberry Pi的官方推荐操作系统,是一个为Raspberry Pi量身打造的基于Debian的Linux发行版。Raspbian Pi OS映像文件是指定的、压缩过的文件,包含了操作系统的所有数据。通过下载最新的Raspbian Pi OS映像文件,可以确保你拥有最新的软件包和功能。下载地址被提供在描述中,以便用户可以获取最新映像。 知识点六:内核提取 描述中提到了从仓库中获取Raspberry-Pi Linux内核并将其提取到一个文件夹中。这意味着为了在QEMU中模拟Raspberry Pi环境,可能需要替换或更新操作系统映像中的内核部分。内核是操作系统的核心部分,负责管理硬件资源和系统进程。提取内核通常涉及到解压缩下载的映像文件,并可能需要重命名相关文件夹以确保与Raspberry Pi的兼容性。 总结: 描述中提供的信息详细说明了如何通过调整Raspberry Pi操作系统映像的大小,安装QEMU仿真器,获取Raspbian Pi OS映像,以及处理磁盘分区和内核提取来准备Raspberry Pi的仿真环境。这些步骤对于IT专业人士来说,是在虚拟环境中测试Raspberry Pi应用程序或驱动程序的关键步骤,特别是在开发OpenCL应用程序时,对硬件资源的配置和管理要求较高。通过理解上述知识点,开发者可以更好地利用Raspberry Pi的并行计算能力,进行高性能计算任务的仿真和测试。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Fluent UDF实战攻略:案例分析与高效代码编写

![Fluent UDF实战攻略:案例分析与高效代码编写](https://databricks.com/wp-content/uploads/2021/10/sql-udf-blog-og-1024x538.png) 参考资源链接:[fluent UDF中文帮助文档](https://wenku.csdn.net/doc/6401abdccce7214c316e9c28?spm=1055.2635.3001.10343) # 1. Fluent UDF基础与应用概览 流体动力学仿真软件Fluent在工程领域被广泛应用于流体流动和热传递问题的模拟。Fluent UDF(User-Defin
recommend-type

如何使用DPDK技术在云数据中心中实现高效率的流量监控与网络安全分析?

在云数据中心领域,随着服务的多样化和用户需求的增长,传统的网络监控和分析方法已经无法满足日益复杂的网络环境。DPDK技术的引入,为解决这一挑战提供了可能。DPDK是一种高性能的数据平面开发套件,旨在优化数据包处理速度,降低延迟,并提高网络吞吐量。具体到实现高效率的流量监控与网络安全分析,可以遵循以下几个关键步骤: 参考资源链接:[DPDK峰会:云数据中心安全实践 - 流量监控与分析](https://wenku.csdn.net/doc/1bq8jittzn?spm=1055.2569.3001.10343) 首先,需要了解DPDK的基本架构和工作原理,特别是它如何通过用户空间驱动程序和大
recommend-type

Apache RocketMQ Go客户端:全面支持与消息处理功能

资源摘要信息:"rocketmq-client-go:Apache RocketMQ Go客户端" Apache RocketMQ Go客户端是专为Go语言开发的RocketMQ客户端库,它几乎涵盖了Apache RocketMQ的所有核心功能,允许Go语言开发者在Go项目中便捷地实现消息的发布与订阅、访问控制列表(ACL)权限管理、消息跟踪等高级特性。该客户端库的设计旨在提供一种简单、高效的方式来与RocketMQ服务进行交互。 核心知识点如下: 1. 发布与订阅消息:RocketMQ Go客户端支持多种消息发送模式,包括同步模式、异步模式和单向发送模式。同步模式允许生产者在发送消息后等待响应,确保消息成功到达。异步模式适用于对响应时间要求不严格的场景,生产者在发送消息时不会阻塞,而是通过回调函数来处理响应。单向发送模式则是最简单的发送方式,只负责将消息发送出去而不关心是否到达,适用于对消息送达不敏感的场景。 2. 发送有条理的消息:在某些业务场景中,需要保证消息的顺序性,比如订单处理。RocketMQ Go客户端提供了按顺序发送消息的能力,确保消息按照发送顺序被消费者消费。 3. 消费消息的推送模型:消费者可以设置为使用推送模型,即消息服务器主动将消息推送给消费者,这种方式可以减少消费者轮询消息的开销,提高消息处理的实时性。 4. 消息跟踪:对于生产环境中的消息传递,了解消息的完整传递路径是非常必要的。RocketMQ Go客户端提供了消息跟踪功能,可以追踪消息从发布到最终消费的完整过程,便于问题的追踪和诊断。 5. 生产者和消费者的ACL:访问控制列表(ACL)是一种权限管理方式,RocketMQ Go客户端支持对生产者和消费者的访问权限进行细粒度控制,以满足企业对数据安全的需求。 6. 如何使用:RocketMQ Go客户端提供了详细的使用文档,新手可以通过分步说明快速上手。而有经验的开发者也可以根据文档深入了解其高级特性。 7. 社区支持:Apache RocketMQ是一个开源项目,拥有活跃的社区支持。无论是使用过程中遇到问题还是想要贡献代码,都可以通过邮件列表与社区其他成员交流。 8. 快速入门:为了帮助新用户快速开始使用RocketMQ Go客户端,官方提供了快速入门指南,其中包含如何设置rocketmq代理和名称服务器等基础知识。 在安装和配置方面,用户通常需要首先访问RocketMQ的官方网站或其在GitHub上的仓库页面,下载最新版本的rocketmq-client-go包,然后在Go项目中引入并初始化客户端。配置过程中可能需要指定RocketMQ服务器的地址和端口,以及设置相应的命名空间或主题等。 对于实际开发中的使用,RocketMQ Go客户端的API设计注重简洁性和直观性,使得Go开发者能够很容易地理解和使用,而不需要深入了解RocketMQ的内部实现细节。但是,对于有特殊需求的用户,Apache RocketMQ社区文档和代码库中提供了大量的参考信息和示例代码,可以用于解决复杂的业务场景。 由于RocketMQ的版本迭代,不同版本的RocketMQ Go客户端可能会引入新的特性和对已有功能的改进。因此,用户在使用过程中应该关注官方发布的版本更新日志,以确保能够使用到最新的特性和性能优化。对于版本2.0.0的特定特性,文档中提到的以同步模式、异步模式和单向方式发送消息,以及消息排序、消息跟踪、ACL等功能,是该版本客户端的核心优势,用户可以根据自己的业务需求进行选择和使用。 总之,rocketmq-client-go作为Apache RocketMQ的Go语言客户端,以其全面的功能支持、简洁的API设计、活跃的社区支持和详尽的文档资料,成为Go开发者在构建分布式应用和消息驱动架构时的得力工具。