mmdetection使用resnet
时间: 2023-10-13 11:04:49 浏览: 216
您好!对于使用resnet作为backbone的mmdetection模型,您可以按照以下步骤进行操作:
1. 首先,确保您已经安装了mmdetection库。可以通过以下命令安装:
```shell
pip install mmdet
```
2. 在mmdetection的配置文件中,您需要指定使用的backbone为resnet。您可以在配置文件中找到`model.backbone`字段,并将其设置为`resnet`。例如:
```python
model = dict(
type='FasterRCNN',
...
backbone=dict(
type='ResNet',
depth=50,
...
),
...
)
```
在上述示例中,我们使用了Faster R-CNN作为检测模型,并指定了使用resnet-50作为backbone。
3. 接下来,您需要下载预训练的resnet权重文件。您可以在mmdetection的模型库中找到相关的预训练权重文件。可以通过以下命令下载:
```shell
wget https://download.openmmlab.com/pretrain/third_party/resnet50_caffe-788b5fa3.pth
```
4. 将下载的预训练权重文件放置在指定的路径下。例如,您可以将其放置在`~/.cache/torch/checkpoints/`目录下。
5. 最后,在使用mmdetection进行训练或测试时,指定使用的配置文件即可。例如,在命令行中执行以下命令进行训练:
```shell
python tools/train.py <config_file>
```
其中`<config_file>`为您的配置文件路径。
这样,您就可以使用resnet作为backbone进行mmdetection模型的训练和测试了。希望能对您有所帮助!如有更多疑问,请随时提问。
阅读全文
相关推荐

















