布隆过滤器 bloom filter:
时间: 2023-09-09 16:09:18 浏览: 177
布隆过滤器-BloomFilter
布隆过滤器(Bloom Filter)是一种重要的数据结构,它用于快速判断一个元素是否存在于一个集合中。布隆过滤器的核心思想是通过一系列哈希函数来对元素进行多次哈希,然后将得到的哈希值映射到一个位数组中,并将对应的位置设为1。当需要判断一个元素是否存在时,同样对其进行多次哈希,检查对应位数组的值是否都为1,若都为1则可以确定元素可能存在;若存在一个0,则可以确定元素一定不存在。因此,布隆过滤器是一种基于概率的数据结构,可以高效地进行查找。
然而,布隆过滤器也存在一些问题。首先,由于多个不同的元素可能会哈希到相同的位上,因此在查询时可能出现误判,即判断一个元素存在时实际上并不存在。这种误判是由于多个元素共享了某一位的原因导致的。其次,布隆过滤器的特性决定了它无法支持元素的删除操作,因为删除一个元素可能会影响其他元素的判断结果,从而增加误判率。
要注意的是,计数布隆过滤器(Counting Bloom Filter)提供了一种实现删除操作的可能性,但并不能保证在后续查询时该值一定返回不存在。因此,不能说计数布隆过滤器支持删除,而是说计数布隆过滤器提供了实现删除的可能。 [3<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [【海量数据处理】布隆过滤器BloomFilter](https://blog.csdn.net/qq_43727529/article/details/127180864)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
- *3* [Java --- redis7之布隆过滤器BloomFilter](https://blog.csdn.net/qq_46093575/article/details/130613434)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文