origin二元逻辑回归
时间: 2023-10-02 20:12:43 浏览: 162
逻辑回归
二元逻辑回归是一种用于处理二分类问题的统计模型。在二元逻辑回归中,我们有一个二分类的目标变量,通过将输入特征与一个逻辑函数进行组合来预测目标变量的概率。逻辑回归模型基于线性回归模型,但使用了逻辑函数来将线性输出转化为概率值。
逻辑回归模型的目标是最大化对数似然函数,该函数可以通过梯度下降算法来最小化负对数似然函数来搜索最优解。梯度下降算法是一种优化算法,通过迭代地更新模型参数来最小化损失函数,以使模型的预测值与实际观测值尽可能接近。
对于二元逻辑回归,我们可以使用二元对数似然损失函数来衡量模型的性能。该损失函数是通过将实际观测值与模型的预测概率进行比较,并计算预测概率与实际标签的差异来得到的。
总结起来,二元逻辑回归是一种用于处理二分类问题的统计模型,通过最大化对数似然函数来搜索最优解,并使用梯度下降算法来优化模型参数。它的目标是将输入特征与逻辑函数相结合,预测目标变量的概率。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [机器学习算法梳理第二篇--GBDT](https://blog.csdn.net/qq_22379931/article/details/89062206)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [机器学习](https://blog.csdn.net/weixin_30606669/article/details/96036004)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文