基于matlab的倒谱分析,mel滤波器组的频率响应曲线

时间: 2023-09-23 11:00:52 浏览: 176
倒谱分析是一种用于语音信号处理的方法,它利用傅里叶变换将语音信号转换为倒谱系数,进而分析声音的特征。而mel滤波器组则是用于模拟人耳听觉特性的一组滤波器。 基于Matlab的倒谱分析常用的步骤有以下几个: 1. 预加重:对输入信号进行高通滤波,强调高频部分,可以减少噪声对结果的影响。 2. 切帧:将长时间连续的语音信号分割成短时域帧,通常每帧的长度为20-40毫秒。 3. 加窗:对每帧信号进行加窗处理,常用的窗函数有汉明窗、矩形窗等。 4. 傅里叶变换:对加窗后的信号进行傅里叶变换,得到频域信号。 5. 取对数:对频域信号取对数,得到倒谱系数。 然后,mel滤波器组的频率响应曲线可以通过如下步骤得到: 1. 设定mel滤波器的中心频率:一般情况下,mel滤波器组的中心频率是根据人耳的感知特性来确定的,通常采用Mel频率尺度。 2. 计算mel频率:将线性频率转换成mel频率,可以使用下面的公式: mel frequency = 2595 * log10(1 + linear frequency / 700) 3. 计算滤波器的中心频率:使用mel频率计算滤波器的中心频率,可以使用下面的公式: center frequency = round((number of filters + 1) * mel frequency / (sampling frequency / 2)) 4. 计算滤波器组的频率响应:根据中心频率和带宽,可以计算滤波器组在不同频率上的幅度响应。 基于以上步骤,可以获得基于Matlab的倒谱分析和mel滤波器组的频率响应曲线。
相关问题

matlab特征提取:MFCC(Mel频率倒谱系数)

### Matlab 中实现 MFCC 特征提取 MFCC(梅尔频率倒谱系数)是一种广泛应用于语音识别中的特征参数。其基本原理在于模拟人类听觉系统对不同频率声音感知的不同敏感度,通过一系列处理步骤来获取能够表征语音特性的数值。 #### 原理概述 为了更好地理解这一过程,在开始编程之前先了解一下各个阶段的作用: - **预加重**:增强高频部分以补偿声道传输损失。 - **分帧加窗**:将连续时间序列分割成多个短时片段并施加汉宁窗口函数减少边界效应。 - **快速傅立叶变换 (FFT)** :把每一帧的数据由时域转到频域以便后续分析[^2]。 ```matlab % 对输入音频数据执行快速傅里叶变换 Xfft = zeros(N,floor(length(x1)/M)-1); Xfft = fft(windowed'); magx = abs(Xfft).^2; for k = 1:N/2+1 psdx(k,:) = magx(k,:); end figure(5), imagesc(psdx), title('Spectrogram'), xlabel('Time(frame number)'), ylabel('Frequency (FFT number)'); ``` - **功率谱密度估计**:计算各频率点上的能量分布情况。 - **应用 Mel 滤波器组**:依据人耳感受特性设计的一系列带通滤波器,用于捕捉重要信息的同时降低维度。 ```matlab clc; clear; close all; warning off; addpath(genpath(pwd)); bank=melbankm(8,512,8000,0,0.5,'y'); bank=full(bank); bank=bank/max(bank(:)); % 幅值归一化 df=8000/512; ff=(0:256)*df; % 频率坐标刻度 for k=1 : 8 % 绘制8个Mel滤波器响应曲线而非原文本中的24个 plot(ff,bank(k,:)); hold on; end hold off; grid; xlabel('频率/Hz'); ylabel('相对幅值') title('Mel滤波器组频率响应曲线') ``` - **取对数运算**:进一步压缩动态范围使得输出更加稳定可靠。 - **离散余弦变换(DCT)**:最终得到一组反映原始信号本质属性却又相互独立的新向量作为结果输出。 以上就是整个流程的大致描述以及对应的部分代码展示。需要注意的是实际操作过程中可能还需要考虑更多细节问题比如采样率设置、噪声抑制等措施来提高算法性能。

语音识别mfcc特征值提取matlab代码

### 回答1: 语音识别领域中,MFCC是一种十分常用的特征提取方法。MFCC可以将语音信号的频率特性较好地表征出来,因此广泛应用于语音识别、语音合成、语音压缩等领域。下面是基于MATLAB实现的MFCC特征提取代码: 1、读取语音信号 [signal,fs] = audioread('audio.wav'); 其中,'audio.wav'为需要处理的语音文件路径。 2、预加重 语音信号的高频信号比低频信号容易受到背景噪声干扰,因此需要进行预加重来强调高频信号。预加重的公式如下: s(i) = s(i) - pre_emph * s(i-1) 其中,s(i)为当前时刻的语音样本,s(i-1)为上一时刻的语音样本,pre_emph为预加重系数。 进行预加重,在MATLAB中的实现代码如下: pre_emph = 0.97; for i = 2:length(signal) signal(i) = signal(i) - pre_emph * signal(i-1); end 3、分帧 将预加重后的语音信号分成长度相等的帧,通常一帧的长度为20-30ms,并且将相邻两帧之间有50%的重叠。 frame_length = 0.025; %帧长为25ms frame_overlap = 0.5; %帧移为50% frame_size = round(frame_length * fs); %计算帧长的样本点数 frame_shift = round(frame_size * frame_overlap); %计算帧移的样本点数 frame_num = fix((length(signal) - frame_size) / frame_shift + 1); %计算总帧数 frames = zeros(frame_size,frame_num); for i = 1:frame_num frame_start = (i - 1) * frame_shift + 1; frame_end = frame_start + frame_size - 1; frames(:,i) = signal(frame_start:frame_end); end 4、加窗 分帧后的语音信号需要进行加窗处理,以消除分帧时引入的边缘效应,并且窗函数应适合于信号的频谱特性。通常使用汉宁窗或矩形窗。 for i = 1:frame_num frames(:,i) = frames(:,i) .* hamming(frame_size); end 5、快速傅里叶变换 对加窗后的语音信号进行快速傅里叶变换,以得到其幅度谱和相位谱。 fft_size = 256; %FFT的点数 fft_num = fix(frame_size / 2) + 1; %FFT后得到的频谱点数 fft_frames = zeros(fft_size,frame_num); for i = 1:frame_num frame = frames(:,i); frame = [frame;zeros(fft_size - frame_size,1)]; fft_frames(:,i) = abs(fft(frame,fft_size)); end 6、Mel频率倒谱系数 使用Mel滤波器组将信号的频谱压缩到较低的频率范围内,从而提取特征。Mel滤波器组的带通滤波器通常采用三角形响应曲线。使用Mel滤波器组在MATLAB的实现如下: mel_num = 20; %Mel滤波器的数量 mel_low_f = 0; mel_high_f = 2595 * log10(1 + fs / 2 / 700); mel_f = linspace(mel_low_f,mel_high_f,mel_num + 2); mel_f_hz = 700 * (10 .^ (mel_f / 2595) - 1); %转化为Hz单位 mel_filter = zeros(fft_num,mel_num); for i = 2:(mel_num + 1) mel_filter(:,i-1) = trimf(1:fft_num,[mel_f_hz(i-1),mel_f_hz(i),mel_f_hz(i+1)]); end MFCC = zeros(mel_num,frame_num); for i = 1:frame_num S = fft_frames(1:fft_num,i); M = S .* mel_filter; M = log(sum(M,1)); M = dct(M); MFCC(:,i) = M(2:mel_num+1); %取Mel倒谱系数的第2-21项 end 最终,我们可以得到一个大小为20×N的MFCC特征矩阵,其中N为语音信号总帧数。在实际应用中,这些MFCC特征通常作为输入进入其他分类算法进行识别和分类。 ### 回答2: 语音识别是一个重要的研究领域,MFCC(Mel-Frequency Cepstral Coefficients)是其中一种用于提取语音特征的方法。MFCC是一个高度优化的特征提取方法,对于许多语音识别系统来说具有很高的准确性。 MATLAB是一种广泛使用的数学软件包,也是一个流行的语音识别平台。下面是一个MFCC特征提取MATLAB代码的例子: fu % 预处理 - 高通滤波 fs = 8000; [data, fs] = audioread('test.wav'); data = highpass(data, 100, fs); % 分帧 frame_length_ms = 30; frame_shift_ms = 10; frame_length = round(frame_length_ms * fs / 1000); frame_shift = round(frame_shift_ms * fs / 1000); frames = enframe(data, frame_length, frame_shift); % 全波形络线提取 pre_emphasis_coefficient = 0.97; u = [1, zeros(1, frame_length - 1)]; pre_emphasis = filter(1, u, data); % 傅里叶变换 ffts = 2 .^ nextpow2(frame_length); spectrum = abs(fft(frames, ffts)); % 梅尔倒谱系数提取 mel_filterbank = mel_filterbank(fs, ffts, 26); mfccs = 20 * log10(mel_filterbank * spectrum(1:size(mel_filterbank, 2), :)); % 梅尔漂移系数提取 cepstral_lifter = 22; mfccs = lifter(mfccs, cepstral_lifter); % 特征向量标准化 mfccs = bsxfun(@minus, mfccs, mean(mfccs)); mfccs = bsxfun(@rdivide, mfccs, std(mfccs)); disp(mfccs); 以上是一个MFCC特征提取MATLAB代码的简要示例,主要包括预处理、分帧、全波形络线提取、傅里叶变换、梅尔倒谱系数提取和梅尔漂移系数提取等步骤,可以给大家提供一些参考。 ### 回答3: MFCC即Mel频率倒谱系数,是语音识别中一种常用的特征值提取方法。下面介绍基于MATLAB实现的语音识别MFCC特征值提取代码。 1. 信号预处理 读取音频文件,进行线性预测分析(LPC)处理,提取谱包络信息。代码如下: [y, fs] = audioread('test.wav'); %读取音频文件 preEmph = [1, -0.97]; %预加重滤波器系数 yf = filter(preEmph, 1, y); %预处理信号 winLen = 0.025; %帧长25ms winStep = 0.01; %帧移10ms nfft = 2^(nextpow2(winLen*fs)); %FFT点数 2. 傅里叶变换 对经过预处理的音频信号进行加窗并进行快速傅里叶变换(FFT)将其转换为频域信号。代码如下: win = hamming(round(winLen*fs),'periodic'); %汉明窗 0.5*(1-cos(2*pi*(0:winLen*fs-1)/(winLen*fs-1))) nOverlap = round(winStep*fs);%帧移 hopStart = 1 : nOverlap : (length(yf)-nfft); for i=1:length(hopStart) temp = yf(hopStart(i) : hopStart(i)+nfft-1) .* win; spectrum = abs(fft(temp, nfft)); end MFCC系数计算 根据MFCC原理,将傅里叶变换得到的频谱图转换为Mel滤波器组的系数,最后通过离散余弦变换(DCT)将其转换为MFCC系数。代码如下: MelFreqMin = 0; %Mel频率的最小值 MelFreqMax = 2595*log10(1+(fs/2)/700); %Mel频率的最大值 numFilters = 20; %Mel滤波器的数量 MelSpacing = linspace(MelFreqMin, MelFreqMax, numFilters+2); %计算Mel频率间距 HzSpacing = hz2mel(linspace(mel2hz(MelFreqMin), mel2hz(MelFreqMax), nfft/2+1)); %计算Hz频率间距 MelWeights = zeros(numFilters, nfft/2+1); %预分配矩阵 for filtNum = 1 : numFilters thisRange = zeros(1, nfft/2+1); lMel = MelSpacing(filtNum); mMel = MelSpacing(filtNum+1); rMel = MelSpacing(filtNum+2); leftSlope = 1 / (mMel - lMel); rightSlope = 1 / (rMel - mMel); for i = 1 : nfft/2+1 if HzSpacing(i) >= lMel && HzSpacing(i) <= mMel thisRange(i) = (HzSpacing(i) - lMel) * leftSlope; elseif HzSpacing(i) >= mMel && HzSpacing(i) <= rMel thisRange(i) = (rMel - HzSpacing(i)) * rightSlope; end end MelWeights(filtNum, :) = thisRange; end MelWeights = MelWeights ./ repmat(sum(MelWeights,2),1,size(MelWeights,2)); %归一化 Z = MelWeights * abs(spectrum(1 : nfft/2+1)).^2; L = 20; %DCT系数个数 mfccCoeff = dct(log(Z)); %DCT变换 mfccCoeff = mfccCoeff(2 : L+1); %取2~21 MFCC系数 至此,我们就实现了语音识别MFCC特征值提取的MATLAB代码,提取到了MFCC系数。这些特征值可以用于模型训练和分类识别。
阅读全文

相关推荐

大家在看

recommend-type

先栅极还是后栅极 业界争论高K技术

随着晶体管尺寸的不断缩小,HKMG(high-k绝缘层+金属栅极)技术几乎已经成为45nm以下级别制程的必备技术.不过在制作HKMG结构晶体管的 工艺方面,业内却存在两大各自固执己见的不同阵营,分别是以IBM为代表的Gate-first(先栅极)工艺流派和以Intel为代表的Gate-last(后栅极)工艺流派,尽管两大阵营均自称只有自己的工艺才是最适合制作HKMG晶体管的技术,但一般来说使用Gate-first工艺实现HKMG结构的难点在于如何控制 PMOS管的Vt电压(门限电压);而Gate-last工艺的难点则在于工艺较复杂,芯片的管芯密度同等条件下要比Gate-first工艺低,需要设 计方积极配合修改电路设计才可以达到与Gate-first工艺相同的管芯密度级别。
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

LQR与PD控制在柔性机械臂中的对比研究

LQR与PD控制在柔性机械臂中的对比研究,路恩,杨雪锋,针对单杆柔性机械臂末端位置控制的问题,本文对柔性机械臂振动主动控制中较为常见的LQR和PD方法进行了控制效果的对比研究。首先,�
recommend-type

丹麦电力电价预测 预测未来24小时的电价 pytorch + lstm + 历史特征和价格 + 时间序列

pytorch + lstm + 历史特征和价格 + 时间序列
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表

最新推荐

recommend-type

梅尔频率倒谱系数(mfcc)及Python实现

梅尔频率倒谱系数(MFCC)是一种广泛用于语音识别系统的特征提取技术,它能够有效地捕捉语音信号中的关键信息,从而简化识别过程。MFCC基于人类听觉系统的特性,模拟了人耳对不同频率声音敏感度的变化。以下是MFCC的...
recommend-type

matlab-音乐检索.doc

MATLAB 音乐检索系统设计是基于信号频谱分析的方法实现音乐检索。该系统的设计主要分为五个步骤:建立音乐库、特征提取、特征匹配、结果显示和音乐检索系统的界面设计。 一、音乐库的建立 音乐库是音乐检索系统的...
recommend-type

语音信号的倒谱分析过程PPT

语音信号的倒谱分析是一种重要的信号处理技术,它在语音处理的许多方面,如语音通信、语音合成以及语音识别等,发挥着核心的作用。特别是在特征提取过程中,倒谱分析能够提供包含丰富信息的参数,从而大大提高语音...
recommend-type

VB图像处理工具设计(论文+源代码)(2024uq).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依