python实现代码,有三个文件夹,其中两个文件夹中分别存放了一些缺陷图像和图像对应的voc格式的xml标签文件,另外一个文件夹存放了一些正常图像,代码实现提取缺陷图像中的某种name的标注框,随机选取一张正常图像粘贴在随机位置中,并形成新的xml标签文件。
时间: 2024-12-08 14:20:26 浏览: 17
为了实现这个功能,我们可以使用Python的`os`, `shutil`, `random`, `xml.etree.ElementTree`以及可能的一个库如`imgaug`(用于图像操作)来处理文件和XML标签。以下是一个简单的代码示例:
```python
import os
import random
import xml.etree.ElementTree as ET
from imgaug import augmenters as iaa
# 定义所需的操作
def extract_defect_boxes(folder_defects, name):
defect_xml_files = [f for f in os.listdir(folder_defects) if f.endswith(".xml")]
# 提取特定名称的缺陷框
def_boxes = []
for file in defect_xml_files:
tree = ET.parse(os.path.join(folder_defects, file))
root = tree.getroot()
for obj in root.findall('object'):
if obj.find('name').text == name:
box = (int(obj.find('bndbox/xmin').text),
int(obj.find('bndbox/ymin').text),
int(obj.find('bndbox/xmax').text),
int(obj.find('bndbox/ymax').text))
def_boxes.append(box)
return def_boxes
def paste_normal_image(defect_box, folder_normals, normal_image_name):
# 随机选择一张正常图片
normal_image_path = os.path.join(folder_normals, random.choice(os.listdir(folder_normals)))
# 使用imgaug进行随机位置粘贴
ia = iaa.Sequential([
iaa.Resize({"height": max(defect_box[3] - defect_box[1], normal_image_path.shape[0]),
"width": max(defect_box[2] - defect_box[0], normal_image_path.shape[1])}),
iaa.PasteElement(paste_from_element=normal_image_path, position=(random.uniform(0, 1), random.uniform(0, 1)))
])
# 创建一个新的Image并保存为xml
new_image = ia.augment_images([normal_image_path])[0]
new_tree = ET.parse(normal_image_path)
new_root = new_tree.getroot()
object_to_add = ET.SubElement(new_root, 'object')
object_to_add.set('name', 'new_object') # 假设新物体名称为'new_object'
bndbox_to_add = ET.SubElement(object_to_add, 'bndbox')
bndbox_to_add.text = ','.join(str(int(coord)) for coord in ia.draw_on_image(np.array(new_image), (defect_box), color=[0, 255, 0], thickness=2))
new_filename = 'paste_' + normal_image_name
new_image_path = os.path.join('new_folder', new_filename)
new_tree.write(new_image_path)
# 使用方法
folder_defects = "path/to/defects/folder"
folder_normals = "path/to/normals/folder"
defect_name = "your_defect_name"
defect_boxes = extract_defect_boxes(folder_defects, defect_name)
random_defect_box = random.choice(defect_boxes)
paste_normal_image(random_defect_box, folder_normals, random.choice(os.listdir(folder_normals)))
```
请注意,你需要替换上述代码中的文件路径和变量值,比如`folder_defects`, `folder_normals`, 和`defect_name`。
阅读全文