贝叶斯优化LSTM回归预测
时间: 2023-10-11 14:14:39 浏览: 192
基于贝叶斯(bayes)优化卷积神经网络-长短期记忆网络(CNN-LSTM)回归预测,bayes-CNN-LSTM多输入单输出模
5星 · 资源好评率100%
贝叶斯优化LSTM回归预测是一种通过贝叶斯优化方法来寻找最优的LSTM模型超参数配置的技术。在时间序列回归预测任务中,LSTM可以用于建模和预测时间序列数据,而贝叶斯优化则可以帮助我们自动地搜索到最佳的超参数配置,使得LSTM模型在预测任务中表现最好。
贝叶斯优化是一种逐步迭代的方法,它首先通过构建一个代理模型(如高斯过程回归)来估计超参数配置和目标指标之间的关系。然后,根据这个代理模型,选择新的超参数配置进行评估并更新代理模型。重复这个过程,直到达到预定的迭代次数或找到满意的超参数配置。
在贝叶斯优化LSTM回归预测中,我们需要定义超参数空间和评估指标。超参数空间包括LSTM的层数、每层的神经元数量、学习率等。评估指标可以是预测误差(如均方根误差)或其他适用于回归任务的指标。
阅读全文