写出遗传算法求 delta_h 最优值的程序
时间: 2024-04-22 20:28:21 浏览: 167
好的,下面是使用遗传算法求解 `delta_h` 的最优值的 MATLAB 程序示例:
```matlab
function [best_delta_h, best_fitness] = geneticAlgorithm()
% 遗传算法参数设置
populationSize = 50;
numGenerations = 100;
crossoverRate = 0.8;
mutationRate = 0.1;
% 问题参数设置
R_1 = 10;
R_s = 20;
h_m = 5;
w_t = 1;
w_s = 0.5;
delta_sm = 0.2;
alpha = 0.1;
p = 2;
% 初始化种群
population = initializePopulation(populationSize, R_1);
% 迭代进化
for generation = 1:numGenerations
disp(['Generation: ' num2str(generation)]);
% 计算适应度
fitness = calculateFitness(population, R_1, R_s, h_m, w_t, w_s, delta_sm);
% 选择操作
selectedParents = selection(population, fitness, populationSize);
% 交叉操作
offspringCrossover = crossover(selectedParents, crossoverRate);
% 变异操作
offspringMutation = mutation(offspringCrossover, mutationRate);
% 合并新种群
population = [selectedParents; offspringMutation];
end
% 计算最佳解
fitness = calculateFitness(population, R_1, R_s, h_m, w_t, w_s, delta_sm);
[best_fitness, best_index] = min(fitness);
best_delta_h = population(best_index);
% 打印结果
disp(['Best delta_h: ' num2str(best_delta_h)]);
disp(['Best fitness: ' num2str(best_fitness)]);
end
% 初始化种群
function population = initializePopulation(populationSize, R_1)
delta_h_min = 0;
delta_h_max = R_1;
population = rand(populationSize, 1) * (delta_h_max - delta_h_min) + delta_h_min;
end
% 计算适应度
function fitness = calculateFitness(population, R_1, R_s, h_m, w_t, w_s, delta_sm)
fitness = zeros(size(population));
for i = 1:length(population)
delta_h = population(i);
% 计算公式中的各个变量
theta = linspace(-pi * alpha / (2 * p), pi * alpha / (2 * p), 100);
K_delta = (w_t / (w_t - delta_sm * w_s)) * ((sqrt((h_m + R_1 - delta_h)^2 - (R_1 * sind(theta)).^2) + delta_h - R_1 * cosd(theta)) ./ (sqrt(R_s^2 - (R_1 * sind(theta)).^2) - sqrt((h_m + R_1 - delta_h)^2 - (R_1 * sind(theta)).^2) - R_1 * cosd(theta)) + 1) - (sqrt((h_m + R_1 - delta_h)^2 - (R_1 * sind(theta)).^2) + delta_h - R_1 * cosd(theta)) ./ (sqrt(R_s^2 - (R_1 * sind(theta)).^2) - sqrt((h_m + R_1 - delta_h)^2 - (R_1 * sind(theta)).^2) - R_1 * cosd(theta));
h_p = sqrt((h_m + R_1 - delta_h)^2 - (R_1 * sind(theta)).^2) + delta_h - R_1 * cosd(theta);
l_g = sqrt(R_s^2 - (R_1 * sind(theta)).^2) - sqrt((h_m + R_1 - delta_h)^2 - (R_1 * sind(theta)).^2) - R_1 * cosd(theta);
% 计算 B_g
B_r = 1; % 这里假设 B_r 的值为 1
sigma = 0; % 这里假设 sigma 的值为 0
B_g = B_r ./ (sigma + K_delta .* h_p ./ l_g);
% 计算适应度
fitness(i) = mean(B_g);
end
end
% 选择操作
function selectedParents = selection(population, fitness, populationSize)
[~, sortedIndex] = sort(fitness, 'descend');
selectedParents = population(sortedIndex(1:populationSize), :);
end
% 交叉操作
function offspringCrossover = crossover(selectedParents, crossoverRate)
numParents = size(selectedParents, 1);
offspringCrossover = zeros(size(selectedParents));
for i = 1:numParents
parent1 = selectedParents(i, :);
if rand <= crossoverRate && i+1 <= numParents
parent2 = selectedParents(i+1, :);
crossoverPoint = randi([1, numel(parent1)]);
offspringCrossover(i, :) = [parent1(1:crossoverPoint), parent2(crossoverPoint+1:end)];
offspringCrossover(i+1, :) = [parent2(1:crossoverPoint), parent1(crossoverPoint+1:end)];
else
offspringCrossover(i, :) = parent1;
end
end
end
% 变异操作
function offspringMutation = mutation(offspringCrossover, mutationRate)
numOffspring = size(offspringCrossover, 1);
offspringMutation = zeros(size(offspringCrossover));
for i = 1:numOffspring
offspring = offspringCrossover(i, :);
if rand <= mutationRate
mutatedGene = rand * range(offspring);
offspringMutation(i, :) = offspring + mutatedGene;
else
offspringMutation(i, :) = offspring;
end
end
end
```
你可以通过调用 `geneticAlgorithm` 函数来运行遗传算法。它将返回最优的 `delta_h` 值以及对应的适应度。
请注意,在计算适应度时,为了获得更准确的结果,我在 `theta` 上生成了 100 个离散点进行计算。你可以根据实际情况进行调整。
希望这可以满足你的需求!如果你有任何其他问题,请随时提问。
阅读全文