pandas求 rsi
时间: 2024-03-28 15:35:47 浏览: 301
在pandas中,可以使用以下步骤来计算RSI(相对强弱指标):
1. 首先,计算每个交易日的价格变化。可以通过使用`diff()`函数来计算每个交易日的价格变化,例如:`df['price_change'] = df['close'].diff()`
2. 接下来,将价格变化分为正数和负数。可以使用`np.where()`函数将价格变化大于0的值设为1,小于0的值设为-1,等于0的值设为0,例如:`df['gain'] = np.where(df['price_change'] > 0, df['price_change'], 0)` 和 `df['loss'] = np.where(df['price_change'] < 0, abs(df['price_change']), 0)`
3. 然后,计算平均增益和平均损失。可以使用滚动窗口函数`rolling()`和`mean()`来计算平均增益和平均损失,例如:`df['avg_gain'] = df['gain'].rolling(window=n).mean()` 和 `df['avg_loss'] = df['loss'].rolling(window=n).mean()`
4. 接下来,计算相对强弱指标(RSI)。可以使用以下公式来计算RSI:`RSI = 100 - (100 / (1 + (avg_gain / avg_loss)))`,例如:`df['rsi'] = 100 - (100 / (1 + (df['avg_gain'] / df['avg_loss'])))`
下面是一个完整的示例代码:
```python
import pandas as pd
import numpy as np
# 创建一个示例数据框
data = {'date': ['2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04', '2021-01-05'],
'close': [100, 110, 120, 115, 105]}
df = pd.DataFrame(data)
# 计算价格变化
df['price_change'] = df['close'].diff()
# 将价格变化分为正数和负数
df['gain'] = np.where(df['price_change'] > 0, df['price_change'], 0)
df['loss'] = np.where(df['price_change'] < 0, abs(df['price_change']), 0)
# 计算平均增益和平均损失
n = 14 # RSI的计算周期
df['avg_gain'] = df['gain'].rolling(window=n).mean()
df['avg_loss'] = df['loss'].rolling(window=n).mean()
# 计算RSI
df['rsi'] = 100 - (100 / (1 + (df['avg_gain'] / df['avg_loss'])))
print(df)
```
阅读全文