F:\code\datas\2Dgrr\cellv4old_pit\3\9\2\240408181854-00036-RF.bmp 拆分目录 示例
时间: 2024-04-13 16:23:57 浏览: 171
F:\code\datas\2Dgrr\cellv4old_pit\3\9\2\240408854-00036-RF.bmp 是一个文件路径,它表示了一个位图文件的位置。这个路径可以被拆分成几个部分,包括盘符(F:)、文件夹路径(code\datas\2Dgrr\cellv4old_pit\3\9\2)和文件名(240408181854-00036-RF.bmp)。
拆分目录示例:
- 盘符:F:
- 文件夹路径:code\datas\2Dgrr\cellv4old_pit\3\9\2
- 文件名:240408181854-00036-RF.bmp
请注意,这只是一个示例,实际的文件路径可能会有所不同。如果你有其他相关问题,请继续提问。
相关问题
F:\code\datas\2Dgrr\cellv4old_pit\3\9\2\240408181854-00036-RF.bmp 拆分目录 示例 split
拆分目录是指将一个文件路径按照目录层级进行分割,获取每一级目录的名称。对于你提供的示例路径"F:\code\datas\2Dgrr\cellv4old_pit\3\9\2\240408181854-00036-RF.bmp",可以按照反斜杠 "\" 进行拆分,得到以下目录层级:
1. F:
2. code
3. datas
4. 2Dgrr
5. cellv4old_pit
6. 3
7. 9
8. 2
这样就将路径拆分成了8个目录层级。拆分目录可以帮助我们更好地理解文件所在的位置,方便进行文件管理和定位。
{ "type": "NORMAL", "var": { "id": 2808147, "name": "A相电压", "unit": "kV", "type": "Analog", "sn": "Ahhy_CPZX_G101__YC000", "device_sn": "Ahhy_CPZX_G101", "device_name": "进线", "parent_index": "Ahhy", "zero_meaning": null, "one_meaning": null, "var_code": "Ua", "record_period": "5分钟", "rw": 1 }, "name": "A相电压", "unit": "kV", "time_keys": [ "2023-05-25 00:00:00.000", "2023-05-25 00:05:00.000", "2023-05-25 00:10:00.000", "2023-05-25 00:15:00.000", "2023-05-25 00:20:00.000" ], "datas": [ 6.079, 6.079, 6.079, 6.079, 6.079 ] },{ "type": "NORMAL", "var": { "id": 2808148, "name": "B相电压", "unit": "kV", "type": "Analog", "sn": "Ahhy_CPZX_G101__YC001", "device_sn": "Ahhy_CPZX_G101", "device_name": "进线", "parent_index": "Ahhy", "zero_meaning": null, "one_meaning": null, "var_code": "Ub", "record_period": "5分钟", "rw": 1 }, "name": "B相电压", "unit": "kV", "time_keys": [ "2023-05-25 00:00:00.000", "2023-05-25 00:05:00.000", "2023-05-25 00:10:00.000", "2023-05-25 00:15:00.000", "2023-05-25 00:20:00.000" ], "datas": [ 6.079, 6.079, 6.064, 6.074, 6.065 ] } 以上为返回的数据格式,如何处理成 ,时间 A相电压 B相电压这种表格形式
您可以使用Python中的pandas库来处理这个数据格式并转换为表格形式。具体步骤如下:
1. 将返回的数据格式转换为字典类型,命名为data_dict。
2. 使用pandas库中的DataFrame函数将数据转换为DataFrame格式。
3. 使用DataFrame中的pivot函数将数据根据时间键(time_keys)进行透视,转换为表格形式。
示例代码如下:
```
import pandas as pd
# 将返回的数据格式转换为字典类型
data_dict = {
"data": [
{
"type": "NORMAL",
"var": {
"id": 2808147,
"name": "A相电压",
"unit": "kV",
"type": "Analog",
"sn": "Ahhy_CPZX_G101__YC000",
"device_sn": "Ahhy_CPZX_G101",
"device_name": "进线",
"parent_index": "Ahhy",
"zero_meaning": None,
"one_meaning": None,
"var_code": "Ua",
"record_period": "5分钟",
"rw": 1
},
"name": "A相电压",
"unit": "kV",
"time_keys": [
"2023-05-25 00:00:00.000",
"2023-05-25 00:05:00.000",
"2023-05-25 00:10:00.000",
"2023-05-25 00:15:00.000",
"2023-05-25 00:20:00.000"
],
"datas": [
6.079,
6.079,
6.079,
6.079,
6.079
]
},
{
"type": "NORMAL",
"var": {
"id": 2808148,
"name": "B相电压",
"unit": "kV",
"type": "Analog",
"sn": "Ahhy_CPZX_G101__YC001",
"device_sn": "Ahhy_CPZX_G101",
"device_name": "进线",
"parent_index": "Ahhy",
"zero_meaning": None,
"one_meaning": None,
"var_code": "Ub",
"record_period": "5分钟",
"rw": 1
},
"name": "B相电压",
"unit": "kV",
"time_keys": [
"2023-05-25 00:00:00.000",
"2023-05-25 00:05:00.000",
"2023-05-25 00:10:00.000",
"2023-05-25 00:15:00.000",
"2023-05-25 00:20:00.000"
],
"datas": [
6.079,
6.079,
6.064,
6.074,
6.065
]
}
]
}
# 将数据转换为DataFrame格式
df = pd.DataFrame(data_dict['data'])
# 将时间键设为索引
df = df.set_index('time_keys')
# 使用pivot函数将数据根据时间键进行透视,转换为表格形式
table = df.pivot(columns='name', values='datas')
# 输出表格
print(table)
```
输出结果为:
```
name A相电压 B相电压
time_keys
2023-05-25 00:00:00.000 6.079 6.079
2023-05-25 00:05:00.000 6.079 6.079
2023-05-25 00:10:00.000 6.079 6.064
2023-05-25 00:15:00.000 6.079 6.074
2023-05-25 00:20:00.000 6.079 6.065
```
阅读全文