数字频率计原c语言代码

时间: 2023-07-31 16:02:57 浏览: 47
下面是一个使用C语言编写的数字频率计的原始代码: ```c #include <stdio.h> #define MAX_DIGIT 10 int main() { int digitCount[MAX_DIGIT] = {0}; int num, digit; printf("请输入一个整数:"); scanf("%d", &num); while (num != 0) { digit = num % 10; digitCount[digit]++; num /= 10; } printf("数字频率统计结果:\n"); for(int i = 0; i < MAX_DIGIT; i++) { printf("数字 %d 出现了 %d 次\n", i, digitCount[i]); } return 0; } ``` 这段代码首先定义了一个大小为10的数组 `digitCount`,用于保存每个数字的出现频率。然后通过从控制台输入一个整数,扫描每一位数字,并对应地更新对应数字在数组中的计数。最后,遍历数组,输出每个数字的频率结果。 注意,这段代码只能统计0到9之间每个数字的出现频率,如果要统计更大范围的数字,需要增加数组大小,并修改相应逻辑。
相关问题

简易数字频率计电路图源码 proteus c语言

### 回答1: 下面是一个使用 Proteus 软件实现的简易数字频率计电路图和源码: 电路图如下: ![电路图](https://i.imgur.com/mnFQz2R.png) 源码如下: ```c #include <reg51.h> // 定义 LCD1602 使用的 IO 口 sbit rs = P2^0; sbit rw = P2^1; sbit enable = P2^2; // 定义 ADC0804 使用的 IO 口 sbit start_conversion = P3^7; sbit output_enable = P3^6; sbit interrupt = P3^5; sbit clock = P3^4; sbit address_bit0 = P3^3; sbit address_bit1 = P3^2; sbit address_bit2 = P3^1; sbit address_bit3 = P3^0; unsigned int count = 0; unsigned char frequency[4]; void delay() { unsigned int i; for(i = 0; i < 60000; i++); } void lcd_command(unsigned char command) { rs = 0; rw = 0; P0 = command; enable = 1; delay(); enable = 0; } void lcd_data(unsigned char data) { rs = 1; rw = 0; P0 = data; enable = 1; delay(); enable = 0; } void lcd_init() { lcd_command(0x38); lcd_command(0x0C); lcd_command(0x06); lcd_command(0x01); } void lcd_print(unsigned char line, unsigned char data[]) { unsigned int i; lcd_command(line); for(i = 0; i < 4; i++) { if(data[i] != 0xFF) { lcd_data(data[i]); } } } void adc_init() { start_conversion = 0; output_enable = 1; interrupt = 0; } unsigned char read_adc() { unsigned char data; address_bit0 = 0; address_bit1 = 0; address_bit2 = 0; address_bit3 = 0; start_conversion = 1; delay(); start_conversion = 0; address_bit0 = 0; address_bit1 = 0; address_bit2 = 0; address_bit3 = 1; output_enable = 0; clock = 1; delay(); clock = 0; delay(); data = P0; output_enable = 1; return data; } void timer0_init() { TMOD = 0x01; TH0 = 0xFC; TL0 = 0x18; ET0 = 1; EA = 1; TR0 = 1; } void timer0_isr() interrupt 1 { count++; TH0 = 0xFC; TL0 = 0x18; } void main() { lcd_init(); adc_init(); timer0_init(); while(1) { if(count >= 10000) { unsigned char i, j; unsigned int f; unsigned char freq_1, freq_2, freq_3, freq_4; f = count * 10; freq_1 = f / 1000; freq_2 = (f % 1000) / 100; freq_3 = (f % 100) / 10; freq_4 = f % 10; frequency[0] = freq_1 + 0x30; frequency[1] = freq_2 + 0x30; frequency[2] = freq_3 + 0x30; frequency[3] = freq_4 + 0x30; lcd_print(0x80, frequency); count = 0; } } } ``` 说明: 该电路使用 ADC0804 将输入信号转换为数字信号,并通过定时器计算频率。然后将频率显示在 LCD1602 上。 ### 回答2: 下面是一个简易数字频率计电路图的Protues仿真源代码: ```c #include<reg51.h> sbit IN=P2^0; //输入口定义 sbit RS=P2^6; //1602端口定义 sbit RW=P2^5; sbit EN=P2^7; void lcd_write_command(unsigned char command) { RS=0; RW=0; EN=1; P0=command; EN=0 ; } void lcd_write_data(unsigned char data1) { RS=1; RW=0; EN=1; P0=data1; EN=0; } void lcd_display_string(unsigned char x,unsigned char y,unsigned char *string) { unsigned char addr; if(y==0) addr=0x80+x; else addr=0x80+0x40+x; lcd_write_command(addr); while(*string!='\0') { lcd_write_data(*string); string++; } } void delay_ms(unsigned int ms) //延时函数,延时1ms { unsigned int i; while(ms--) { for(i=0;i<110;i++); } } void init_1602() { lcd_write_command(0x38); //2行,5*7点阵,8位数据接口 delay_ms(5); lcd_write_command(0x0C); //开显示,无光标 delay_ms(5); lcd_write_command(0x06); //写数据右移动,左移动光标不动 delay_ms(5); lcd_write_command(0x01); //清屏幕 delay_ms(5); } void main(void) { unsigned char str[]="Freq: "; unsigned int counter=0; unsigned char freq_counter_str[5]; IN=1; while(1) { IN=1; while(IN); counter++; //响应一次输入脉冲,计数器自增 lcd_display_string(0,0,str); lcd_write_command(0x8D); sprintf(freq_counter_str,"%05u",counter); lcd_display_string(7,0,freq_counter_str); delay_ms(60000); //等待1分钟 counter=0; //计数器清零 } } ``` 这段代码实现了一个简易的数字频率计算电路,使用Proteus进行仿真。在电路中,使用了P2^0作为输入口,表示输入脉冲信号。1602液晶屏使用了P2^6、P2^5和P2^7作为端口定义。在代码的主函数中,首先进行1602的初始化,然后在一个循环中检测到输入脉冲时,计数器自增,并显示在1602液晶屏上。使用sprintf函数将计数值转换为字符串,然后通过lcd_display_string函数在液晶屏上显示出来。最后,通过delay_ms函数等待1分钟,然后将计数器清零,继续循环。 ### 回答3: 以下是在Proteus中使用C语言编写的简易数字频率计的电路图源码: ```c #include <reg51.h> sbit signal = P2^3; // 输入信号引脚 sbit led = P1^0; // 指示灯引脚 unsigned int count = 0; // 计数器 // 延时函数 void delay(unsigned int time) { unsigned int i, j; for(i = 0; i < time; i++) { for(j = 0; j < 1275; j++); } } // 外部中断0的中断服务程序 void external0_ISR() interrupt 0 { count++; // 每次触发中断计数器加1 } void main() { TMOD = 0x01; // 定时器0工作在模式1(16位定时器)下 TH0 = 0xFC; // 设置定时器初值,用于500ms延时 TL0 = 0x66; TR0 = 1; // 启动定时器0 EX0 = 1; // 使能外部中断0 IT0 = 1; // 设置外部中断0为上升沿触发方式 EA = 1; // 全局中断使能 while(1) { if(count >= 2) { // 当计数器大于等于2时,表示4个脉冲信号出现,即频率大于2Hz led = 1; // 点亮指示灯 count = 0; // 清零计数器 delay(200); // 延时200ms led = 0; // 关闭指示灯 delay(200); // 延时200ms } } } ``` 在上述代码中,使用了外部中断0来接收输入信号的上升沿,并在中断服务程序中进行计数器的清零操作。如果计数器的值大于等于2,则表示输入信号的频率超过了2Hz,点亮指示灯,通过延时函数延时200ms后熄灭指示灯,再延时200ms。程序将不断循环执行以上操作,以实现简易的数字频率计功能。

基于单片机at89s52的频率计设计c语言程序,基于AT89S52单片机的数字频率计课程设计.doc...

很抱歉,我并不能提供文档或代码的下载链接或者编写。但我可以给出一些基于AT89S52单片机设计数字频率计的一般步骤和思路。 1. 确定输入信号 首先需要确定要测量的输入信号类型和范围。常见的输入信号有正弦波、方波、三角波等,不同的信号类型需要不同的处理方法。同时,需要了解输入信号的最高频率和最小可测量频率,以便确定计数器的时钟频率。 2. 设计计数器 根据输入信号的最高频率和最小可测量频率,确定计数器的时钟频率和计数器位数。一般情况下,可以使用定时器/计数器模块来实现计数器。需要注意的是,计数器的溢出时间应该尽可能长,以便减少测量误差。 3. 计算频率值 当计数器溢出时,需要对计数器的值进行读取和处理,以得到输入信号的频率值。一般情况下,可以使用中断来触发计数器值的读取和处理。根据计数器的位数和时钟频率,可以计算出每个计数器值所代表的时间间隔,从而计算出输入信号的频率值。 4. 显示频率值 最后,需要将频率值显示出来。可以使用数码管、LCD显示屏等设备来实现频率值的显示。需要根据显示设备的特性,以及频率值的位数和精度,来确定显示方法和显示格式。 以上是基于AT89S52单片机设计数字频率计的一般步骤和思路,具体实现需要根据具体情况进行调整和优化。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。