PyCharm 爬取高博要闻新闻,网址:http://www.gist.edu.cn/38/list.htm1、爬取新闻名称、新闻的详情链接2、爬取发布人、时间3、实现分页爬取(1-5页)4、保存成gaobo.csv
时间: 2024-09-24 20:08:02 浏览: 75
PyCharm 是一个强大的集成开发环境(IDE),特别适合 Python 开发,包括 Web 爬虫项目。要使用 PyCharm 爬取高博要闻新闻并将其保存到 CSV 文件中,你可以按照以下步骤操作:
1. 安装必要的库:首先,需要安装 `requests`, `BeautifulSoup` 或者 `Scrapy` 用于网络请求和解析 HTML,以及 `pandas` 用于数据处理和 CSV 写入。
```python
pip install requests beautifulsoup4 pandas
```
2. 编写爬虫脚本:使用 Python 的 `requests` 库发送 HTTP 请求获取网页内容,然后使用如 BeautifulSoup 对 HTML 进行解析。这里是一个基本示例:
```python
import requests
from bs4 import BeautifulSoup
import pandas as pd
# 获取单页内容
def get_page_content(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
return soup
# 解析新闻信息
def parse_news(soup):
news_data = []
for item in soup.find_all('div', class_='list-item'): # 假设列表项有特定类名
title = item.h2.text.strip() # 新闻标题
detail_link = item.a['href'] # 链接
author = item.p.text.split(':')[0] if item.p else None # 发布人
date = item.p.text.split(':')[-1] if item.p else None # 时间
news_data.append({'title': title, 'link': detail_link, 'author': author, 'date': date})
return news_data
# 分页爬取
def crawl_pages(start=1, end=5):
all_news = []
for page_num in range(start, end + 1):
url = f'http://www.gist.edu.cn/38/list.htm?_page={page_num}' # 假设每页需要添加分页参数
soup = get_page_content(url)
news = parse_news(soup)
all_news.extend(news)
return all_news
# 将结果保存到 CSV
def save_to_csv(data, filename='gaobo.csv'):
df = pd.DataFrame(data)
df.to_csv(filename, index=False)
# 主函数
news = crawl_pages()
save_to_csv(news)
```
注意:实际编写时,你需要查看目标网站的具体结构,并调整 CSS 类名或其他选择器来匹配页面元素。上述代码仅作为参考,可能需要针对网站的实际 HTML 结构进行修改。
阅读全文
相关推荐

















