matlab实现卡方独立性检验
时间: 2023-11-21 09:58:05 浏览: 124
卡方检验的Matlab实现
5星 · 资源好评率100%
以下是在MATLAB中实现卡方独立性检验的步骤:
1.准备数据:将观察到的频率单元的数据矩阵(I x J -table)存储在MATLAB中。
2.计算期望值:使用MATLAB的`tabulate`函数计算每个因素的边际分布,并使用这些值计算期望值矩阵。
3.计算卡方值:使用MATLAB的`chi2stat`函数计算卡方值和P值。
4.解释结果:根据P值确定是否拒绝零假设,即各因素之间相互独立。
下面是一个MATLAB代码示例,演示如何使用`chi2stat`函数进行卡方独立性检验:
```matlab
% 准备数据
data = [10 20 30; 20 30 40; 30 40 50];
% 计算期望值
marginals = sum(data, 2);
expected = marginals * marginals' / sum(marginals);
% 计算卡方值和P值
[chi2val, pval] = chi2stat(data(:), expected(:), numel(data) - 1);
% 输出结果
fprintf('卡方值为 %.2f,P值为 %.4f\n', chi2val, pval);
```
阅读全文