遗传算法多目标求解代码
时间: 2023-07-29 20:09:45 浏览: 73
遗传算法(Genetic Algorithm)是一种用于优化问题的启发式算法,可以用于多目标求解。以下是一个基本的遗传算法多目标求解的代码示例:
```python
import random
import numpy as np
# 定义目标函数
def objective_function(x):
# 多个目标函数,这里以两个为例
f1 = x[0]**2
f2 = (x[0]-2)**2
return [f1, f2]
# 定义适应度函数
def fitness_function(population):
fitness_values = []
for individual in population:
fitness_values.append(objective_function(individual))
return fitness_values
# 初始化种群
def initialize_population(population_size, chromosome_length):
population = []
for _ in range(population_size):
individual = [random.random() for _ in range(chromosome_length)]
population.append(individual)
return population
# 交叉操作
def crossover(parent1, parent2):
child = []
for i in range(len(parent1)):
if random.random() < 0.5:
child.append(parent1[i])
else:
child.append(parent2[i])
return child
# 变异操作
def mutation(individual, mutation_rate):
for i in range(len(individual)):
if random.random() < mutation_rate:
individual[i] = random.random()
return individual
# 非支配排序
def non_dominated_sorting(fitness_values):
ranks = np.zeros(len(fitness_values))
fronts = [[]]
domination_count = np.zeros(len(fitness_values))
dominated_solutions = [[] for _ in range(len(fitness_values))]
for i in range(len(fitness_values)):
for j in range(i+1, len(fitness_values)):
if fitness_values[i][0] < fitness_values[j][0] and fitness_values[i][1] < fitness_values[j][1]:
dominated_solutions[i].append(j)
domination_count[j] += 1
elif fitness_values[i][0] > fitness_values[j][0] and fitness_values[i][1] > fitness_values[j][1]:
dominated_solutions[j].append(i)
domination_count[i] += 1
if domination_count[i] == 0:
ranks[i] = 0
fronts[0].append(i)
i = 0
while len(fronts[i]) > 0:
current_front = []
for individual in fronts[i]:
for dominated_solution in dominated_solutions[individual]:
domination_count[dominated_solution] -= 1
if domination_count[dominated_solution] == 0:
ranks[dominated_solution] = i + 1
current_front.append(dominated_solution)
i += 1
fronts.append(current_front)
return fronts
# 遗传算法多目标求解
def genetic_algorithm(population_size, chromosome_length, crossover_rate, mutation_rate, generations):
population = initialize_population(population_size, chromosome_length)
for _ in range(generations):
fitness_values = fitness_function(population)
fronts = non_dominated_sorting(fitness_values)
next_population = []
front_index = 0
while len(next_population) + len(fronts[front_index]) <= population_size:
next_population.extend(fronts[front_index])
front_index += 1
remaining_population = sorted(fronts[front_index], key=lambda x: (-fitness_values[x][0], -fitness_values[x][1]))
while len(next_population) < population_size:
parent1 = random.choice(remaining_population)
parent2 = random.choice(remaining_population)
child = crossover(population[parent1], population[parent2])
child = mutation(child, mutation_rate)
next_population.append(child)
population = next_population
return population
# 测试
population_size = 100
chromosome_length = 2
crossover_rate = 0.8
mutation_rate = 0.1
generations = 50
result = genetic_algorithm(population_size, chromosome_length, crossover_rate, mutation_rate, generations)
print("最优解集合:")
for individual in result:
print(individual, objective_function(individual))
```
上述代码是一个基本的遗传算法多目标求解的实现,其中目标函数和适应度函数需要根据实际问题进行定义和修改。在遗传算法的迭代过程中,通过非支配排序和拥挤度距离来维护种群的多样性和收敛性。
阅读全文