编码器电机 stm32 测距

时间: 2023-08-10 14:07:53 浏览: 137
编码器电机在STM32中可以使用定时器接口进行编码器模式的配置和使用。编码器的输入信号经过输入滤波和边沿检测后,可以通过配置编码器的工作模式实现正向/反向计数。其中,模式三是指四倍频模式,即每转一圈产生四倍的脉冲信号。在使用编码器模式时,需要注意编码器的转速上限,超过这个上限会导致编码器无法正常工作。定时器的CNT寄存器的值即为编码器的位置信息,正转时CNT值会增加,反转时CNT值会减少。初始化时给定的TIM_Period值应该是码盘整圈的刻度值,超过此值会自动修正为0。在高速转动时,计数值偶尔会出现错误,多计一个或少计一个数是正常现象,因此建议使用绝对位置信号进行修正。绝对位置信号不一定需要在零位置点,收到信号后将CNT修正为一个固定的数值即可。在STM32中,编码器模式的使用可以大大简化解析过程,避免手动消除毛刺并解析编码器数据的复杂操作。因此,通过配置定时器的编码器模式,可以实现对编码器电机的测距功能。
相关问题

用stm32c8t6和jgb37-520编码器电机测距

要使用STM32C8T6和JGB37-520编码器电机进行测距,您需要进行以下步骤: 1. 连接JGB37-520编码器电机和STM32C8T6单片机。 2. 配置STM32C8T6的定时器,以便读取编码器信号。 3. 通过读取编码器信号,计算电机的转速和位置。 4. 使用电机的转速和位置信息,计算电机的线速度和加速度。 5. 将电机的线速度和加速度转换为距离。 下面是一些可能有帮助的代码片段: 1. 连接JGB37-520编码器电机和STM32C8T6单片机 JGB37-520编码器电机有两个信号线,一个是A相信号线,一个是B相信号线。将A相信号线连接到STM32C8T6的TIMx_CH1引脚,将B相信号线连接到TIMx_CH2引脚。 2. 配置STM32C8T6的定时器,以便读取编码器信号 使用STM32的定时器来读取编码器信号。您需要配置定时器的输入捕获模式,以便捕获编码器信号的上升沿和下降沿。您还需要设置定时器的计数器和预分频器,以便在每个捕获事件之间测量时间。下面是一个示例配置: ```c // 定义定时器和GPIO引脚 #define TIMx TIM2 #define TIMx_CLK RCC_APB1Periph_TIM2 #define TIMx_IRQn TIM2_IRQn #define TIMx_IRQHandler TIM2_IRQHandler #define TIMx_CH1_GPIO_PORT GPIOA #define TIMx_CH1_GPIO_PIN GPIO_Pin_0 #define TIMx_CH1_GPIO_CLK RCC_AHB1Periph_GPIOA #define TIMx_CH1_SOURCE GPIO_PinSource0 #define TIMx_CH1_AF GPIO_AF_TIM2 #define TIMx_CH2_GPIO_PORT GPIOA #define TIMx_CH2_GPIO_PIN GPIO_Pin_1 #define TIMx_CH2_GPIO_CLK RCC_AHB1Periph_GPIOA #define TIMx_CH2_SOURCE GPIO_PinSource1 #define TIMx_CH2_AF GPIO_AF_TIM2 // 初始化定时器 void TIM_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_ICInitTypeDef TIM_ICInitStructure; GPIO_InitTypeDef GPIO_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; // 使能定时器和GPIO时钟 RCC_APB1PeriphClockCmd(TIMx_CLK, ENABLE); RCC_AHB1PeriphClockCmd(TIMx_CH1_GPIO_CLK | TIMx_CH2_GPIO_CLK, ENABLE); // 配置GPIO为TIMx通道1和通道2 GPIO_InitStructure.GPIO_Pin = TIMx_CH1_GPIO_PIN | TIMx_CH2_GPIO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ; GPIO_Init(GPIOA, &GPIO_InitStructure); // 将GPIO引脚映射到TIMx通道1和通道2上 GPIO_PinAFConfig(TIMx_CH1_GPIO_PORT, TIMx_CH1_SOURCE, TIMx_CH1_AF); GPIO_PinAFConfig(TIMx_CH2_GPIO_PORT, TIMx_CH2_SOURCE, TIMx_CH2_AF); // 配置定时器为输入捕获模式 TIM_TimeBaseStructure.TIM_Period = 0xFFFF; TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIMx, &TIM_TimeBaseStructure); TIM_ICInitStructure.TIM_Channel = TIM_Channel_1; TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; TIM_ICInit(TIMx, &TIM_ICInitStructure); TIM_ICInitStructure.TIM_Channel = TIM_Channel_2; TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; TIM_ICInit(TIMx, &TIM_ICInitStructure); // 使能定时器中断 NVIC_InitStructure.NVIC_IRQChannel = TIMx_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 启动定时器 TIM_Cmd(TIMx, ENABLE); // 启用定时器的捕获中断 TIM_ITConfig(TIMx, TIM_IT_CC1 | TIM_IT_CC2, ENABLE); } // 定时器中断处理函数 void TIMx_IRQHandler(void) { if (TIM_GetITStatus(TIMx, TIM_IT_CC1) != RESET) { // 处理A相信号 TIM_ClearITPendingBit(TIMx, TIM_IT_CC1); } else if (TIM_GetITStatus(TIMx, TIM_IT_CC2) != RESET) { // 处理B相信号 TIM_ClearITPendingBit(TIMx, TIM_IT_CC2); } } ``` 3. 通过读取编码器信号,计算电机的转速和位置 当定时器捕获到编码器信号的上升沿或下降沿时,您需要更新电机的位置和速度。在处理A相信号时,如果B相信号也发生了变化,则电机向前转动;如果B相信号没有发生变化,则电机向后转动。在处理B相信号时,您可以使用相同的逻辑来确定电机的方向。下面是一个示例实现: ```c // 定义编码器参数 #define ENCODER_RESOLUTION 1000.0f // 编码器分辨率 #define WHEEL_DIAMETER 0.1f // 轮子直径(单位:米) #define GEAR_RATIO 100.0f // 减速比 #define PI 3.1415926 // 定义电机状态 typedef struct { uint32_t position; // 电机的位置(单位:脉冲) float speed; // 电机的速度(单位:转/秒) } motor_t; motor_t motor; // 处理A相信号中断 void handle_encoder_A_interrupt(void) { if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1)) { // 编码器向前转动 motor.position++; } else { // 编码器向后转动 motor.position--; } } // 处理B相信号中断 void handle_encoder_B_interrupt(void) { if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1) == GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0)) { // 编码器向前转动 motor.position++; } else { // 编码器向后转动 motor.position--; } } // 计算电机的速度和位置 void calculate_motor_speed_and_position(void) { static uint32_t last_position = 0; static uint32_t last_time = 0; // 计算电机的位置 uint32_t current_position = motor.position; float delta_position = current_position - last_position; last_position = current_position; // 计算电机的速度 uint32_t current_time = TIM_GetCounter(TIM2); float delta_time = current_time - last_time; last_time = current_time; float delta_angle = delta_position / ENCODER_RESOLUTION * 2 * PI / GEAR_RATIO; float delta_distance = delta_angle * WHEEL_DIAMETER / 2; motor.speed = delta_distance / delta_time; } ``` 4. 使用电机的转速和位置信息,计算电机的线速度和加速度 使用电机的速度和位置信息,可以计算电机的线速度和加速度。您需要将电机的速度转换为线速度,然后使用两个连续的速度值来计算电机的加速度。下面是一个示例实现: ```c // 计算电机的线速度和加速度 void calculate_motor_linear_speed_and_acceleration(float *linear_speed, float *acceleration) { static float last_speed = 0; static uint32_t last_time = 0; // 计算电机的线速度 *linear_speed = motor.speed * WHEEL_DIAMETER / 2; // 计算电机的加速度 uint32_t current_time = TIM_GetCounter(TIM2); float delta_time = current_time - last_time; last_time = current_time; *acceleration = (*linear_speed - last_speed) / delta_time; last_speed = *linear_speed; } ``` 5. 将电机的线速度和加速度转换为距离 最后,您可以使用电机的线速度和加速度来计算电机的距离。下面是一个示例实现: ```c // 计算电机移动的距离 void calculate_motor_distance(float *distance) { static float last_speed = 0; static uint32_t last_time = 0; // 计算电机的线速度和加速度 float linear_speed, acceleration; calculate_motor_linear_speed_and_acceleration(&linear_speed, &acceleration); // 计算电机移动的距离 uint32_t current_time = TIM_GetCounter(TIM2); float delta_time = current_time - last_time; last_time = current_time; *distance += (last_speed + linear_speed) / 2 * delta_time; last_speed = linear_speed; } ``` 以上是一个简单的示例,可以帮助您开始使用STM32C8T6和JGB37-520编码器电机进行测距。但是,请注意,您需要进行更多的调试和测试,以确保代码的正确性和可靠性。
阅读全文

相关推荐

最新推荐

recommend-type

基于STM32步进电机加减速控制查表法

在基于STM32的步进电机控制系统中,加减速控制是一项关键任务,它关系到电机运行的平稳性和效率。查表法是一种常见的实现步进电机加减速策略的方法,通过预先计算好不同速度阶段对应的脉冲间隔,从而实现平滑的速度...
recommend-type

STM32正交编码器例程

STM32 的每个 TIMER 都有正交编码器输入接口,TI1,TI2 经过输入滤波,边沿检测产生 TI1FP1,TI2FP2 接到编码器模块,通过配置编码器的工作模式,即可以对编码器进行正向/反向计数。 知识点1: STM32 定时器的正交...
recommend-type

STM32实现IIR工频陷波器

STM32实现IIR工频陷波器是嵌入式系统中常见的噪声抑制技术,尤其在处理电力系统干扰时非常有效。在中国大陆,工频干扰主要由50Hz及其谐波组成,对某些信号采集系统(如心电信号)造成影响。为了解决这个问题,可以...
recommend-type

基于STM32的微型步进电机驱动控制器设计

基于STM32的微型步进电机驱动控制器设计是一种用于精确控制微型步进电机的系统,它采用STM32F103T8U6作为主控制器,A4988作为步进电机驱动设备,通过上位机串口界面与用户进行交互,允许用户调整电机的转速、旋转...
recommend-type

STM32F407TIM编码器模式的一些问题

STM32F407 TIM 编码器模式的一些问题 在调试 STM32F407VG 的过程中,笔者发现了 TIM 编码器模式的一些问题。 TIM 编码器模式是 STM32F407VG 中的一个重要功能,它可以将外部编码器的脉冲信号转换为数字信号,以便于...
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。