在Ubuntu16.04系统上,如何使用Python3和face_recognition库,结合OpenCV进行实时人脸识别?请提供详细步骤和代码示例。
时间: 2024-11-30 19:24:15 浏览: 38
要进行实时人脸识别,首先需要确保你的系统中安装了Python3、OpenCV以及face_recognition库。在Ubuntu16.04上,可以通过以下步骤来实现:
参考资源链接:[Python3 face_recognition实战:人脸识别与应用](https://wenku.csdn.net/doc/2uyvhc5kt7?spm=1055.2569.3001.10343)
1. 安装依赖:确保Python3已安装,然后使用pip安装OpenCV和face_recognition库。
pip3 install opencv-python
pip3 install face_recognition
2. 准备环境:打开终端,安装必要的依赖项,如编译工具和系统库。
sudo apt-get update
sudo apt-get install build-essential cmake
sudo apt-get install libopenblas-dev liblapack-dev libjpeg-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev
3. 编写代码:创建一个Python脚本,使用OpenCV捕获视频流,然后应用face_recognition库进行人脸检测和识别。
import cv2
import face_recognition
# 初始化摄像头
video_capture = cv2.VideoCapture(0)
# 加载已知的人脸图像并编码
known_face_encodings = []
known_face_names = []
while True:
ret, frame = video_capture.read()
if not ret:
break
# 检测图像中的人脸
face_locations = face_recognition.face_locations(frame)
face_encodings = face_recognition.face_encodings(frame, face_locations)
# 比较已知人脸编码
for face_encoding in face_encodings:
matches = face_***pare_faces(known_face_encodings, face_encoding)
name =
参考资源链接:[Python3 face_recognition实战:人脸识别与应用](https://wenku.csdn.net/doc/2uyvhc5kt7?spm=1055.2569.3001.10343)
阅读全文
相关推荐















