strstr返回值类型

时间: 2024-08-14 09:01:49 浏览: 33
`strstr` 函数通常是在 C 语言标准库中的 `string.h` 头文件里找到的一个函数,用于在一个字符串(haystack)中查找另一个字符串(needle)。这个函数返回的是指向第一次找到的子串(needle)的指针,如果没找到则返回 `NULL`。 返回值类型是 `char*`,即字符指针类型。它会返回匹配子串的首地址,如果未找到,则返回的是 `NULL`,这在许多应用场景下会被用来判断是否存在匹配。例如: ```c char str[] = "Hello, world!"; char *found = strstr(str, "world"); if (found) { printf("Found at position %ld\n", found - str); // 输出子串的位置 } else { printf("Substring not found.\n"); } ```
相关问题

char类型strstr()和string.find()举例

当你在 C++ 中使用 char 类型的字符串时,可以使用 `strstr()` 函数来查找子字符串。`strstr()` 函数在字符串中查找子字符串,并返回第一次出现的位置(指向子字符串的指针)。以下是一个示例: ```cpp #include <iostream> #include <cstring> int main() { const char* str = "Hello, world!"; const char* subStr = "world"; const char* result = strstr(str, subStr); if (result) { std::cout << "子字符串 '" << subStr << "' 在字符串中的位置是:" << result - str << std::endl; } else { std::cout << "未找到子字符串 '" << subStr << "'" << std::endl; } return 0; } ``` 输出结果: ``` 子字符串 'world' 在字符串中的位置是:7 ``` 另一种方法是使用 C++ 的 `std::string` 类型和 `find()` 成员函数来查找子字符串。以下是一个示例: ```cpp #include <iostream> #include <string> int main() { std::string str = "Hello, world!"; std::string subStr = "world"; size_t result = str.find(subStr); if (result != std::string::npos) { std::cout << "子字符串 '" << subStr << "' 在字符串中的位置是:" << result << std::endl; } else { std::cout << "未找到子字符串 '" << subStr << "'" << std::endl; } return 0; } ``` 输出结果: ``` 子字符串 'world' 在字符串中的位置是:7 ``` 注意,在使用 `find()` 函数时,如果返回值为 `std::string::npos`,表示没有找到子字符串。

请仔细描述C语言strstr函数

C语言中的 `strstr` 函数用于在字符串中查找某个子串,并返回子串在字符串中第一次出现的位置。 函数原型如下: ```c char *strstr(const char *str1, const char *str2); ``` 其中 `str1` 是要查找的字符串,`str2` 是要查找的子串。 函数返回值为 `char *` 类型,指向第一次出现 `str2` 的位置,如果未找到,则返回 `NULL`。 实现原理是使用两个指针,一个指向 `str1`,一个指向 `str2`。 `str1` 指针从头开始遍历字符串,每遍历一个字符,就和 `str2` 指针指向的字符做比较。如果相等,则继续比较下一个字符,直到 `str2` 指针指向的字符为空,即找到了子串,返回 `str1` 指针的位置。如果不相等,则 `str1` 指针向后移动一位,继续遍历字符串。 需要注意的是,`strstr` 函数找到的是第一次出现子串的位置,如果有多个位置都出现了子串,只返回第一个位置。

相关推荐

#include <stdio.h> #include <stdlib.h> #include <string.h> #include #include <sys/time.h> #include <unistd.h> #include #include <signal.h> #include #include <algorithm> #include <iostream> #include <map> #include <string> #include <queue> #include <vector> #include <sstream> #define LOG_BRASERO_NUM 15 using namespace std; static char *g_cpBrasero[] = { (char *) "ID", (char *) "刻录时间", (char *) "刻录机型号", (char *) "光盘属性", (char *) "刻录状态", (char *) "计算机帐户", (char *) "文件名称", (char *) "文件大小", (char *) "文件类型", (char *) "测试1", (char *) "测试2", (char *) "测试3", (char *) "测试4", (char *) "测试5", (char *) "测试6", }; typedef struct _tagBraseroLog { char cpValue[1024]; } BRASEROLOG; int uosaarch_line_parse(char *pBuffer) { int index, len,lastLen; int ret = 0; char *begin = NULL; char *end = NULL; char *lastEnd = NULL; //debug printf("进入了扫描"); BRASEROLOG BraseroLog[LOG_BRASERO_NUM]; memset(&BraseroLog, 0, LOG_BRASERO_NUM * sizeof(BRASEROLOG)); for (index = 0; index < LOG_BRASERO_NUM; index++) { begin = strstr(pBuffer, g_cpBrasero[index]); if(NULL == begin) continue; begin=strstr(begin,"="); end = strstr(pBuffer, g_cpBrasero[index + 1]); //end--; if (begin != NULL) { len = strlen("="); unsigned long strSize = end - begin - len ; printf("BraseroLOg[%d]=%s\n",index,BraseroLog[index].cpValue); //strncpy(BraseroLog[index].cpValue, begin + len, std::min(strSize, sizeof(BraseroLog[index].cpValue) - 1)); // printf("PrintLog[%d] = %s\n",index,BraseroLog[index].cpValue); } return 0; } return 1; } int main(){ char a[500] = "ID=1689309873, 刻录时间=2023-07-14 12:44:34, 刻录机型号=TSSTcorp-CDDVDW-SE-218CB-R95M6YMDA00008, 光盘属性=DVD+R, 刻录状态=成功, 计算机帐户=hba, 文件名称=/home/hba/Desktop/刻录测试文件.txt, 文件大小=66 B, 文件类型=文档"; uosaarch_line_parse(a); return 0; }

line打印出来是Status:WR mode : WRC_SLAVE_WR1 wr0 -> lnk:0 rx:0 tx:10110 lock:1 wr1 -> lnk:1 rx:9123 tx:2598 lock:1 syncs:wr1 sv:1 ss:'TRACK_PHASE' aux:0 sec:2653 nsec:197479840 mu:869694 dms:430077 dtxm:240682 drxm:191022 dtxs:241345 drxs:182145 asym:9540 crtt:14500 cko:-8 setp:4150 hd:57967 md:33250 ad:65000 ucnt:2399 temp: 47.750 C Time: Thu, Jan 1, 1970, 00:44:13 +487604944 nanoseconds. mode_str = strstr(line,"mode : ") + strlen("mode : "); if(!mode_str){ printf("WR mode not fount\n"); exit(1); } if(strncmp(mode_str,"WRC_SLAVE_WR1",strlen("WRC_SLAVE_WR1")) ==0){ if((mu_str = strstr(line,"mu:")) != NULL){ mu_str += strlen("mu:"); sscanf(mu_str,"%d",&wr1_loopb); }else{ printf("Unknown mu: %s\n",mu_str); exit(1); } if((dms_str = strstr(line,"dms:")) != NULL){ dms_str += strlen("dms:"); sscanf(dms_str,"%d",&wr1_onew); }else{ printf("Unknown dms: %s\n",dms_str); exit(1); } if((crtt_str = strstr(line,"crtt:")) != NULL){ crtt_str += strlen("crtt:"); sscanf(crtt_str,"%d",&wr1_linkt); }else{ printf("Unknown crtt: %s\n",crtt_str); exit(1); } }else if(strncmp(mode_str, "WRC_SLAVE_WR0",strlen("WRC_SLAVE_WR0")) == 0){ if((mu_str = strstr(line,"mu:")) != NULL){ mu_str += strlen("mu:"); sscanf(mu_str,"%d",&wr0_loopb); } if((dms_str = strstr(line,"dms:")) != NULL){ dms_str += strlen("dms:"); sscanf(dms_str,"%d",&wr0_onew); } if((crtt_str = strstr(line,"crtt:")) != NULL){ crtt_str += strlen("crtt:"); sscanf(crtt_str,"%d",&wr0_linkt); } }else{ printf("Unknown WR mode: %s\n",mode_str); exit(1); } 有段错误

enum Choose { TcpHeartbeat=200, TcpExeCmd, TcpSendCmd }; // 定义结构体 struct DataPacket { int clientSockfd; enum Choose choose; char *cmdBuf; char *returnValue; }; struct DataPacket datapacket; struct DataPacket ReceivePackets; int InitializePointer(char option[]) { next: if (strstr(option, "init")) { ReceivePackets.cmdBuf = calloc(BUFFER_SIZE, sizeof(char)); ReceivePackets.returnValue = calloc(BUFFER_SIZE, sizeof(char)); datapacket.cmdBuf = calloc(BUFFER_SIZE, sizeof(char)); datapacket.returnValue = calloc(BUFFER_SIZE, sizeof(char)); if (ReceivePackets.cmdBuf == NULL || ReceivePackets.returnValue == NULL || datapacket.cmdBuf == NULL || datapacket.returnValue == NULL) { CON_LOG("memory allocation failed"); goto next; } } else if (strstr(option, "free")) { free(datapacket.cmdBuf); datapacket.cmdBuf = NULL; free(ReceivePackets.returnValue); ReceivePackets.returnValue = NULL; free(datapacket.cmdBuf); datapacket.cmdBuf = NULL; free(ReceivePackets.cmdBuf); ReceivePackets.cmdBuf = NULL; } return 1; } int WriteServer(){ ssize_t bytes_written = write(datapacket.clientSockfd , &datapacket,sizeof(datapacket)); if (bytes_written == -1) { perror("Write error"); goto fail; } else if (bytes_written < sizeof(datapacket)){ CON_LOG("Only partial data was written"); goto fail; } else { CON_LOG("Write successful"); CON_LOG("Write#fd:%d# choose:%d# cmdBuf:%s# returnValue:%s#",datapacket.clientSockfd,datapacket.choose,datapacket.cmdBuf,datapacket.returnValue); } InitializePointer("free"); return 1; } int PerformServerTransfer(int server_client_sockfd) { char str_msg_code[SMALL_STR_LEN]={0}; int msg_code=0,code=0,ret=1; char cmd[TEMP_STR_LEN] = {0}; char *SendString = NULL; char resultbuf[LONG_BUFF_LEN] = {0}; datapacket.clientSockfd = server_client_sockfd; if(!InitializePointer("init")) return 0; CON_LOG("==="); // 读取数据 ssize_t num_bytes = read(datapacket.clientSockfd,&ReceivePackets,sizeof(ReceivePackets)); CON_LOG("==="); if (num_bytes > 0) { // 成功读取了一定数量的数据 CON_LOG("==="); CON_LOG("###read######fd:%d,cmdBuf:%s# returnValue:%s",ReceivePackets.clientSockfd,ReceivePackets.cmdBuf,ReceivePackets.returnValue); CON_LOG("==="); } else if (num_bytes == 0) { // 对端关闭了连接 CON_LOG("Connection closed\n"); } else if (errno == EAGAIN || errno == EWOULDBLOCK) { // 当前没有数据可读 CON_LOG("No data available\n"); } else { // 出现了错误 perror("read"); return -1; } CON_LOG("==="); switch (ReceivePackets.choose) { case TcpHeartbeat: datapacket.choose=TcpHeartbeat; if(ReceivePackets.returnValue != NULL && strlen(ReceivePackets.returnValue)){ sprintf(cmd,"echo %s > /tmp/returnValue",datapacket.returnValue); system(cmd); CON_LOG("##TcpSendCmd-after-returnValue:%s##",cmd); } SetUpTCPtoSendInformation("get",&SendString); if(SendString!= NULL && strlen(SendString)){ datapacket.choose=TcpExeCmd; free(datapacket.cmdBuf); datapacket.cmdBuf=malloc(strlen(SendString) + 1); strcpy(datapacket.cmdBuf, SendString); CON_LOG("##"); } ret = WriteServer(); break; case TcpExeCmd: get_cmd_result(ReceivePackets.cmdBuf, resultbuf, sizeof(resultbuf)); datapacket.choose=TcpHeartbeat; free(datapacket.returnValue); datapacket.returnValue=malloc(strlen(resultbuf) + 1); strcpy(datapacket.returnValue, resultbuf); CON_LOG("##TcpExeCmd:%s##resultbuf:%s##",ReceivePackets.returnValue, datapacket.returnValue); ret = WriteServer(); break; default: sleep(5); CON_LOG("NO CONNECT"); break; } CON_LOG("==="); return ret; }这段程序可行性和优化

最新推荐

recommend-type

Matlab界面GUI设计的车牌定位[Matlab界面GUI设计].zip

linux常用命令大全
recommend-type

【独家首发】基于matlab沙猫群算法SCSO-GMDH风电数据回归预测【含Matlab源码 7530期】.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化GMDH回归预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化GMDH回归预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化GMDH回归预测 4.4.3 灰狼算法GWO/狼群算法WPA优化GMDH回归预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化GMDH回归预测 4.4.5 萤火虫算法FA/差分算法DE优化GMDH回归预测 4.4.6 其他优化算法优化GMDH回归预测
recommend-type

解决本地连接丢失无法上网的问题

"解决本地连接丢失无法上网的问题" 本地连接是计算机中的一种网络连接方式,用于连接到互联网或局域网。但是,有时候本地连接可能会丢失或不可用,导致无法上网。本文将从最简单的方法开始,逐步解释如何解决本地连接丢失的问题。 **任务栏没有“本地连接”** 在某些情况下,任务栏中可能没有“本地连接”的选项,但是在右键“网上邻居”的“属性”中有“本地连接”。这是因为本地连接可能被隐藏或由病毒修改设置。解决方法是右键网上邻居—属性—打开网络连接窗口,右键“本地连接”—“属性”—将两者的勾勾打上,点击“确定”就OK了。 **无论何处都看不到“本地连接”字样** 如果在任务栏、右键“网上邻居”的“属性”中都看不到“本地连接”的选项,那么可能是硬件接触不良、驱动错误、服务被禁用或系统策略设定所致。解决方法可以从以下几个方面入手: **插拔一次网卡一次** 如果是独立网卡,本地连接的丢失多是因为网卡接触不良造成。解决方法是关机,拔掉主机后面的电源插头,打开主机,去掉网卡上固定的螺丝,将网卡小心拔掉。使用工具将主板灰尘清理干净,然后用橡皮将金属接触片擦一遍。将网卡向原位置插好,插电,开机测试。如果正常发现本地连接图标,则将机箱封好。 **查看设备管理器中查看本地连接设备状态** 右键“我的电脑”—“属性”—“硬件”—“设备管理器”—看设备列表中“网络适配器”一项中至少有一项。如果这里空空如也,那说明系统没有检测到网卡,右键最上面的小电脑的图标“扫描检测硬件改动”,检测一下。如果还是没有那么是硬件的接触问题或者网卡问题。 **查看网卡设备状态** 右键网络适配器中对应的网卡选择“属性”可以看到网卡的运行状况,包括状态、驱动、中断、电源控制等。如果发现提示不正常,可以尝试将驱动程序卸载,重启计算机。 本地连接丢失的问题可以通过简单的设置修改或硬件检查来解决。如果以上方法都无法解决问题,那么可能是硬件接口或者主板芯片出故障了,建议拿到专业的客服维修。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Java泛型权威指南:精通从入门到企业级应用的10个关键点

![java 泛型数据结构](https://media.geeksforgeeks.org/wp-content/uploads/20210409185210/HowtoImplementStackinJavaUsingArrayandGenerics.jpg) # 1. Java泛型基础介绍 Java泛型是Java SE 1.5版本中引入的一个特性,旨在为Java编程语言引入参数化类型的概念。通过使用泛型,可以设计出类型安全的类、接口和方法。泛型减少了强制类型转换的需求,并提供了更好的代码复用能力。 ## 1.1 泛型的用途和优点 泛型的主要用途包括: - **类型安全**:泛型能
recommend-type

cuda下载后怎么通过anaconda关联进pycharm

CUDA(Compute Unified Device Architecture)是NVIDIA提供的一种并行计算平台和编程模型,用于加速GPU上进行的高性能计算任务。如果你想在PyCharm中使用CUDA,你需要先安装CUDA驱动和cuDNN库,然后配置Python环境来识别CUDA。 以下是步骤: 1. **安装CUDA和cuDNN**: - 访问NVIDIA官网下载CUDA Toolkit:https://www.nvidia.com/zh-cn/datacenter/cuda-downloads/ - 下载对应GPU型号和系统的版本,并按照安装向导安装。 - 安装
recommend-type

BIOS报警声音解析:故障原因与解决方法

BIOS报警声音是计算机启动过程中的一种重要提示机制,当硬件或软件出现问题时,它会发出特定的蜂鸣声,帮助用户识别故障源。本文主要针对常见的BIOS类型——AWARD、AMI和早期的POENIX(现已被AWARD收购)——进行详细的故障代码解读。 AWARDBIOS的报警声含义: 1. 1短声:系统正常启动,表示无问题。 2. 2短声:常规错误,需要进入CMOS Setup进行设置调整,可能是不正确的选项导致。 3. 1长1短:RAM或主板故障,尝试更换内存或检查主板。 4. 1长2短:显示器或显示卡错误,检查视频输出设备。 5. 1长3短:键盘控制器问题,检查主板接口或更换键盘。 6. 1长9短:主板FlashRAM或EPROM错误,BIOS损坏,更换FlashRAM。 7. 不断长响:内存条未插紧或损坏,需重新插入或更换。 8. 持续短响:电源或显示问题,检查所有连接线。 AMI BIOS的报警声含义: 1. 1短声:内存刷新失败,内存严重损坏,可能需要更换。 2. 2短声:内存奇偶校验错误,可关闭CMOS中的奇偶校验选项。 3. 3短声:系统基本内存检查失败,替换内存排查。 4. 4短声:系统时钟错误,可能涉及主板问题,建议维修或更换。 5. 5短声:CPU错误,可能是CPU、插座或其他组件问题,需进一步诊断。 6. 6短声:键盘控制器错误,检查键盘连接或更换新键盘。 7. 7短声:系统实模式错误,主板可能存在问题。 8. 8短声:显存读写错误,可能是显卡存储芯片损坏,更换故障芯片或修理显卡。 9. 9短声:ROM BIOS检验错误,需要替换相同型号的BIOS。 总结,BIOS报警声音是诊断计算机问题的重要线索,通过理解和识别不同长度和组合的蜂鸣声,用户可以快速定位到故障所在,采取相应的解决措施,确保计算机的正常运行。同时,对于不同类型的BIOS,其报警代码有所不同,因此熟悉这些代码对应的意义对于日常维护和故障排除至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

图路径规划技术:导航系统中的路径优化算法

![java数据结构之图](https://img-blog.csdnimg.cn/201812241337282.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2R5d182NjY2NjY=,size_16,color_FFFFFF,t_70) # 1. 图路径规划技术概述 图路径规划技术是现代信息技术中的关键组成部分,它在物流、交通、网络设计等多个领域发挥着重要作用。路径规划涉及的图论基础、路径优化算法和应用案例是这一领域的三大支
recommend-type

多功能计算机JAVA实现一个简单的多功能计算器 ,可以进行加、减、乘、除、三角函数、乘方、平 方根及阶乘等运算,除此之外,还可以进行清屏,程序可以关闭;

在Java中实现一个多功能计算器,首先我们需要创建一个Calculator类,包含各种基本运算方法以及额外的如三角函数、乘方、平方根和阶乘等功能。这里是一个简单的示例: ```java import java.util.Scanner; public class Calculator { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); boolean isRunning = true; while (