如何将svmtrain(x, y, 'kernel_function', 'rbf', 'showplot', false)的功能用fitcsvm实现
时间: 2024-01-06 17:04:51 浏览: 94
要使用fitcsvm函数来实现svmtrain的功能,你可以按照以下步骤进行操作:
1. 将数据x和标签y转换为表格形式,即将它们放入一个表格数据结构中。
```matlab
data = table(x, y);
```
2. 创建一个svm模型对象,并设置其属性。
```matlab
svmModel = fitcsvm(data, 'KernelFunction', 'rbf', 'ShowPlot', false);
```
在这里,'KernelFunction'属性设置为'rbf'以使用径向基函数核,'ShowPlot'属性设置为false以避免显示训练过程中的图像。
3. 使用训练数据来训练svm模型。
```matlab
trainedModel = train(svmModel);
```
在fitcsvm中,训练模型实际上是通过调用train方法来完成的。
现在,你可以使用fitcsvm函数来实现svmtrain(x, y, 'kernel_function', 'rbf', 'showplot', false)的功能。
相关问题
svmtrain转换成fitcsvm,函数举例
好的,以下是一个将MATLAB的svmtrain函数转换成fitcsvm函数的示例代码:
```matlab
% 加载示例数据
load fisheriris
X = meas;
Y = species;
% 将类别变量转换为数值变量
Y = grp2idx(Y);
% 将数据集分为训练集和测试集
cv = cvpartition(size(X,1),'HoldOut',0.3);
idx = cv.test;
XTrain = X(~idx,:);
YTrain = Y(~idx,:);
XTest = X(idx,:);
YTest = Y(idx,:);
% 使用svmtrain函数训练SVM模型
svmStruct = svmtrain(XTrain,YTrain,'Kernel_Function','rbf');
% 将svmtrain转换为fitcsvm
SVMModel = fitcsvm(XTrain,YTrain,'KernelFunction','rbf');
% 使用svmclassify函数对测试集进行分类
classes1 = svmclassify(svmStruct,XTest);
classes2 = predict(SVMModel,XTest);
% 比较两种方法的分类结果
isequal(classes1,classes2) % 应该返回 true
```
这个例子使用了鸢尾花数据集,将类别变量转换为数值变量,将数据集分为训练集和测试集,然后分别使用svmtrain函数和fitcsvm函数训练SVM模型,并使用svmclassify函数和predict函数对测试集进行分类,最后比较两种方法的分类结果是否相同。
svmtrain(trainlabel, train_train, '-c 128 -g 0.03 -t 2')
This code trains a support vector machine (SVM) model using the training data (train_train) and their corresponding labels (trainlabel). The SVM model is trained using a radial basis function (RBF) kernel with a regularization parameter (C) of 128 and a gamma value (gamma) of 0.03. The SVM model is trained using the C-SVM algorithm (t=2).
阅读全文
相关推荐
















