GRNN神经网络python代码
时间: 2024-03-21 20:36:52 浏览: 264
GRNN(Generalized Regression Neural Network)是一种用于回归问题的神经网络模型。下面是一个简单的GRNN神经网络的Python代码示例:
```python
import numpy as np
class GRNN:
def __init__(self, sigma=1.0):
self.sigma = sigma
def gaussian_kernel(self, x, c):
return np.exp(-np.sum((x - c) ** 2) / (2 * self.sigma ** 2))
def train(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
def predict(self, X_test):
y_pred = []
for x in X_test:
numerator = 0
denominator = 0
for i, c in enumerate(self.X_train):
kernel = self.gaussian_kernel(x, c)
numerator += kernel * self.y_train[i]
denominator += kernel
y_pred.append(numerator / denominator)
return np.array(y_pred)
```
使用示例:
```python
# 创建GRNN对象
grnn = GRNN(sigma=1.0)
# 训练数据
X_train = np.array([[1], [2], [3], [4], [5]])
y_train = np.array([2, 4, 6, 8, 10])
grnn.train(X_train, y_train)
# 预测数据
X_test = np.array([[6], [7], [8]])
y_pred = grnn.predict(X_test)
print(y_pred) # 输出预测结果
```
这段代码实现了一个简单的GRNN神经网络模型。在训练阶段,通过调用`train`方法传入训练数据,其中`X_train`是输入特征,`y_train`是对应的目标值。在预测阶段,通过调用`predict`方法传入测试数据,即可得到预测结果。
阅读全文