python 无人机强化学习控制

时间: 2023-11-09 09:02:37 浏览: 87
Python无人机强化学习控制是一种基于Python编程语言和强化学习算法的控制方法,用于控制和优化无人机的飞行行为和决策。 强化学习是一种机器学习方法,强调智能系统通过与环境的交互来学习和改进自己的决策策略。在无人机控制中,我们可以将无人机的飞行环境视为智能系统与环境的交互场景,并通过强化学习算法来优化无人机的飞行控制策略。 Python是一种功能强大且易于学习的编程语言,拥有丰富的机器学习和强化学习库,如TensorFlow、Keras和PyTorch等。利用Python的这些库,我们可以实现强化学习算法中的关键部分,如状态表示、动作选择和奖励计算等。 在无人机强化学习控制中,首先需要将无人机的状态信息转化为数值化的输入,如无人机的位置、速度和姿态等。然后,我们可以使用强化学习算法中的“智能体-Agent”来决定无人机下一步的行动,即选择一个动作。动作的选择通常基于当前状态和策略函数,策略函数可使用强化学习算法中的价值函数、Q函数或策略梯度等方法来计算。 为了让无人机学习和改进自己的决策策略,我们还需要定义一个奖励函数,用于评估无人机每次行动的质量。奖励函数通常根据无人机的飞行目标、安全性和效率等指标进行设计。无人机根据奖励函数的反馈来调整自己的行动策略,通过试错学习和优化来改进飞行控制能力。 总而言之,Python无人机强化学习控制是一种结合了Python编程语言和强化学习算法的控制方法,用于优化无人机的飞行行为和决策。通过将无人机的状态转化为数值化的输入,利用强化学习算法中的智能体、策略函数和奖励函数等关键组件,我们可以实现无人机的智能控制和优化。
相关问题

用代码生成无人机强化学习在airsim避障

首先,需要安装 AirSim 模拟器和 Python API。可以参考官方文档进行安装。 接下来,需要定义无人机的状态和动作。在本例中,我们将无人机状态定义为无人机的位置和速度。动作定义为无人机的油门、俯仰角和偏航角。 ``` class DroneState: def __init__(self, pos, vel): self.pos = pos self.vel = vel class DroneAction: def __init__(self, throttle, pitch, yaw): self.throttle = throttle self.pitch = pitch self.yaw = yaw ``` 然后,需要定义一个强化学习代理。在本例中,我们使用深度 Q 学习算法(DQN)作为代理。DQN 是一种深度强化学习算法,它使用深度神经网络来估计 Q 值函数,并通过贪心策略选择动作。 ``` class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 self.epsilon = 1.0 self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.001 self.model = self._build_model() def _build_model(self): model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() <= self.epsilon: return np.random.uniform(-1, 1, size=(self.action_size,)) act_values = self.model.predict(state) return act_values[0] def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = reward if not done: target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0])) target_f = self.model.predict(state) target_f[0][action] = target self.model.fit(state, target_f, epochs=1, verbose=0) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay def load(self, name): self.model.load_weights(name) def save(self, name): self.model.save_weights(name) ``` 在训练过程中,我们需要定义奖励函数。在本例中,我们将奖励定义为无人机与障碍物的距离的负值,以鼓励无人机尽可能远离障碍物。 ``` def get_reward(prev_state, next_state): dist_to_obstacle = np.linalg.norm(next_state.pos - obstacle_pos) reward = -(dist_to_obstacle / 10) return reward ``` 最后,我们可以使用以下代码来训练代理并测试它的性能。 ``` # 初始化无人机和障碍物的位置 drone_pos = np.array([0, 0, -10]) drone_vel = np.array([0, 0, 0]) drone_state = DroneState(drone_pos, drone_vel) obstacle_pos = np.array([10, 10, -10]) # 初始化代理 state_size = 6 action_size = 3 agent = DQNAgent(state_size, action_size) # 训练代理 batch_size = 32 num_episodes = 1000 for i in range(num_episodes): state = np.concatenate((drone_state.pos, drone_state.vel)) for t in range(100): # 获取动作 action = agent.act(state) drone_action = DroneAction(*action) # 更新无人机状态 drone_pos, drone_vel = update_drone_state(drone_state, drone_action) drone_state = DroneState(drone_pos, drone_vel) # 获取奖励并更新经验回放 next_state = np.concatenate((drone_state.pos, drone_state.vel)) reward = get_reward(state, next_state) agent.remember(state, action, reward, next_state, done) state = next_state if done: break # 更新 Q 值函数 if len(agent.memory) > batch_size: agent.replay(batch_size) # 保存模型 if i % 50 == 0: agent.save('dqn_model.h5') # 测试代理 drone_state = DroneState(drone_pos, drone_vel) for t in range(100): state = np.concatenate((drone_state.pos, drone_state.vel)) action = agent.act(state) drone_action = DroneAction(*action) drone_pos, drone_vel = update_drone_state(drone_state, drone_action) drone_state = DroneState(drone_pos, drone_vel) if done: break ``` 在这个例子中,我们使用了 DQN 算法来训练代理。你也可以尝试其他强化学习算法,例如 actor-critic 算法或者 policy gradient 算法。此外,你还可以尝试使用更高级的深度神经网络架构来提高代理的性能。

无人机强化学习穿环该怎么实现代码示例

### 回答1: 无人机穿环问题可以被视为一个强化学习的问题。在这个问题中,无人机需要学习如何在不碰到环的情况下穿过环。这个问题可以用基于模型的强化学习方法来解决,其中无人机的行为是由一个神经网络来决定的。 以下是一个简单的代码示例,展示了如何使用 Q 学习算法来训练一个无人机穿环的强化学习代理: ```python import numpy as np # 环境状态 class State: def __init__(self, pos, vel): self.pos = pos self.vel = vel def __repr__(self): return f"State(pos={self.pos}, vel={self.vel})" # 环境 class Environment: def __init__(self): # 环的位置和大小 self.hoop_pos = np.array([5, 5]) self.hoop_radius = 2 # 重置环境 def reset(self): # 随机初始化无人机的位置和速度 self.drone_pos = np.random.rand(2) * 10 self.drone_vel = np.zeros(2) return State(self.drone_pos, self.drone_vel) # 获取奖励 def get_reward(self): # 判断无人机是否穿过环 dist = np.linalg.norm(self.drone_pos - self.hoop_pos) if dist < self.hoop_radius: return 1 else: return 0 # 执行动作 def step(self, action): # 根据动作更新无人机的速度 self.drone_vel += action # 更新无人机的位置 self.drone_pos += self.drone_vel # 获取奖励 reward = self.get_reward() # 判断是否结束 done = reward == 1 # 返回新的状态、奖励和是否结束的标志 return State(self.drone_pos, self.drone_vel), reward, done # Q 学习代理 class QLearningAgent: def __init__(self, env, alpha=0.1, gamma=0.9, epsilon=0.1): self.env = env self.alpha = alpha self.gamma = gamma self.epsilon = epsilon # 初始化 Q 值表 self.q_table = np.zeros((11, 11, 3, 3, 3, 3)) # 选择动作 def choose_action(self, state): if np.random.rand() < self.epsilon: # 以 epsilon 的概率随机选择动作 return np.random.randint(3, size=2) - 1 else: # 否则选择具有最高 Q 值的动作 x, y = np.floor(state.pos).astype(int) vx, vy = np.floor(state.vel + 1).astype(int) return np.unravel_index(np.argmax(self.q_table[x, y, vx, vy]), (3, 3)) - 1 # 更新 Q 值表 def update_q_table(self, state, action, next_state, reward): x, y = np.floor(state.pos).astype(int) vx, vy = np.floor(state.vel + 1).astype(int) ax, ay = action + 1 next_x, next_y = np.floor(next_state.pos).astype(int) next_vx, next_vy = np.floor(next_state.vel + 1).astype(int) # 使用 Q 学习更新 Q 值 self.q_table[x, y, vx, vy, ax, ay] += self.alpha * (reward + self.gamma * np.max(self.q_table[next_x, next_y, next_vx, next_vy]) - self.q_table[x, y, vx, vy, ax, ay]) # 训练代理 def train(self, num_episodes): for i in range(num_episodes): state = self.env.reset() while True: action = self.choose_action(state) next_state, reward, done = self.env.step(action) self.update_q_table(state, action, next_state, reward) state = next_state if done: break # 创建环境和代理 env = Environment() agent = QLearningAgent(env) # 训练代理 agent.train(1000) # 测试代理 state = env.reset() while True: action = agent.choose_action(state) next_state, reward, done = env.step(action) state = next_state if done: print("Success!") break ``` 在这个示例中,我们使用了 Q 学习算法来训练一个无人机穿环的强化学习代理。这个代理有一个 Q 值表,用于存储在每个状态下采取每个动作的预期回报。在每个时间步,代理从当前状态中选择一个动作,并根据环境的反馈更新 Q 值表。在训练结束后,代理可以用 Q 值表来选择最优的动作,以穿过环。 ### 回答2: 无人机强化学习穿环的实现可以通过以下代码示例进行展示: 首先,为了实现无人机的强化学习穿环,需要一个强化学习算法,例如深度强化学习中的深度Q网络。 1. 初始化强化学习环境: ```python import gym import numpy as np env = gym.make('环境名称') ``` 注意,'环境名称'是指具体的无人机模拟环境,可以是OpenAI Gym的一个标准环境,也可以是自己定义的环境。 2. 构建深度Q网络模型: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam def create_dqn_model(): model = Sequential() model.add(Dense(24, input_shape=env.observation_space.shape, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(env.action_space.n, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=0.001)) return model dqn_model = create_dqn_model() ``` 在这个示例中,我们选择了一个具有两个隐藏层的深度神经网络,用于估计每个动作的Q值。 3. 实现训练过程: ```python import random epsilon = 1.0 # 探索率 epsilon_decay = 0.995 # 探索率衰减因子 gamma = 0.99 # 折扣因子 batch_size = 32 # 批量大小 memory = [] def remember(state, action, reward, next_state, done): memory.append((state, action, reward, next_state, done)) def replay(batch_size): if len(memory) < batch_size: return batch = random.sample(memory, batch_size) for state, action, reward, next_state, done in batch: target = reward if not done: target = reward + gamma * np.amax(dqn_model.predict(next_state)[0]) target_f = dqn_model.predict(state) target_f[0][action] = target dqn_model.fit(state, target_f, epochs=1, verbose=0) if epsilon > 0.01: epsilon *= epsilon_decay num_episodes = 500 for episode in range(num_episodes): state = env.reset() state = np.reshape(state, (1, env.observation_space.shape[0])) done = False total_reward = 0 while not done: if np.random.rand() <= epsilon: action = env.action_space.sample() else: action = np.argmax(dqn_model.predict(state)[0]) next_state, reward, done, _ = env.step(action) next_state = np.reshape(next_state, (1, env.observation_space.shape[0])) remember(state, action, reward, next_state, done) state = next_state total_reward += reward replay(batch_size) print("Episode: ", episode, " Total Reward: ", total_reward) ``` 在训练过程中,我们通过选择随机动作(按照一定的探索率)或者根据Q网络的预测选择动作,不断与环境交互,根据环境反馈更新Q网络的参数。同时,为了提高训练的效率,我们使用了经验回放(memory replay)的技巧,随机从之前的经验中选择样本进行训练。 以上是一个基本的代码示例,用于实现无人机的强化学习穿环。 ### 回答3: 无人机强化学习穿环是指通过使用强化学习算法训练无人机在空中飞行穿过环的能力。下面是一个示例代码,给出了一个使用深度强化学习算法(如深度Q网络)训练无人机穿环的例子: 1. 定义环境: 首先,我们需要定义无人机穿环的环境。可以使用一个二维空间,通过坐标表示无人机的位置,环的位置和半径等信息。可以定义状态空间、动作空间、奖励和终止条件等。 2. 初始化网络和经验回放缓冲区: 使用深度强化学习算法中的深度Q网络作为无人机的智能体。首先,要初始化网络结构,并设置相关的超参数(例如学习率、探索率等)。同时,也需要初始化经验回放缓冲区用于训练样本的存储。 3. 定义动作选择策略: 根据当前状态选择动作。可以使用ε-贪婪策略,在一定的探索概率ε下,选择随机动作,其他情况下,选择基于当前状态和Q值的最佳动作。 4. 训练网络: 开始训练网络,通过与环境交互收集训练数据。每一步,根据当前状态选择动作,并执行该动作得到下一个状态和奖励。将这些经验存储到经验回放缓冲区中。然后从经验回放缓冲区中随机采样一批数据用于网络的训练。通过最小化Q值的均方差误差来更新网络权重。 5. 迭代训练: 循环执行第4步,直到达到指定的训练轮数或收敛条件。每轮训练都可以逐渐降低探索概率ε,使无人机逐渐学习到更稳定的策略。 6. 测试网络: 训练完成后,可以使用最新的网络模型进行测试。根据当前状态选择动作,并执行该动作,观察无人机是否能够成功穿过环以及它的表现。 这个示例代码提供了一个基本的框架,可以根据具体需求进行修改和优化。无人机强化学习穿环是一项复杂的任务,需要深入了解强化学习算法和相关工具的使用,同时合理设计环境和网络结构,进行多轮迭代训练才能得到较好的结果。

相关推荐

最新推荐

recommend-type

1719378276792.jpg

1719378276792.jpg
recommend-type

054ssm-jsp-mysql旅游景点线路网站.zip(可运行源码+数据库文件+文档)

本系统采用了jsp技术,将所有业务模块采用以浏览器交互的模式,选择MySQL作为系统的数据库,开发工具选择eclipse来进行系统的设计。基本实现了旅游网站应有的主要功能模块,本系统有管理员、和会员,管理员权限如下:个人中心、会员管理、景点分类管理、旅游景点管理、旅游线路管理、系统管理;会员权限如下:个人中心、旅游景点管理、旅游线路管理、我的收藏管理等操作。 对系统进行测试后,改善了程序逻辑和代码。同时确保系统中所有的程序都能正常运行,所有的功能都能操作,并且该系统有很好的操作体验,实现了对于景点和会员双赢。 关键词:旅游网站;jsp;Mysql;
recommend-type

基于单片机的篮球赛计时计分器.doc

基于单片机的篮球赛计时计分器.doc
recommend-type

基于springboot开发华强北商城二手手机管理系统vue+mysql+论文(毕业设计).zip

本项目是一个基于SpringBoot开发的华府便利店信息管理系统,使用了Vue和MySQL作为前端框架和数据库。该系统主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的Java学习者,包含项目源码、数据库脚本、项目说明等,有论文参考,可以直接作为毕设使用。 后台框架采用SpringBoot,数据库使用MySQL,开发环境为JDK、IDEA、Tomcat。项目经过严格调试,确保可以运行。如果基础还行,可以在代码基础之上进行改动以实现更多功能。 该系统的功能主要包括商品管理、订单管理、用户管理等模块。在商品管理模块中,可以添加、修改、删除商品信息;在订单管理模块中,可以查看订单详情、处理订单状态;在用户管理模块中,可以注册、登录、修改个人信息等。此外,系统还提供了数据统计功能,可以对销售数据进行统计和分析。 技术实现方面,前端采用Vue框架进行开发,后端使用SpringBoot框架搭建服务端应用。数据库采用MySQL进行数据存储和管理。整个系统通过前后端分离的方式实现,提高了系统的可维护性和可扩展性。同时,系统还采用了一些流行的技术和工具,如MyBatis、JPA等进行数据访问和操作,以及Maven进行项目管理和构建。 总之,本系统是一个基于SpringBoot开发的华府便利店信息管理系统,使用了Vue和MySQL作为前端框架和数据库。系统经过严格调试,确保可以运行。如果基础还行,可以在代码基础之上进行改动以实现更多功能。
recommend-type

wx152微信阅读小程序-ssm+vue+uniapp.zip(可运行源码+sql文件+)

微信阅读小程序是一个很好的项目,使用了SSM(Spring + Spring MVC + MyBatis)框架 、 前端(Vue.js)和 uniapp 技术。 微信阅读小程序是一个很好的项目,使用了SSM(Spring + Spring MVC + MyBatis)框架 、 前端(Vue.js)和 uniapp 技术。 微信阅读小程序是一个很好的项目,使用了SSM(Spring + Spring MVC + MyBatis)框架 、 前端(Vue.js)和 uniapp 技术。 微信阅读小程序是一个很好的项目,使用了SSM(Spring + Spring MVC + MyBatis)框架 、 前端(Vue.js)和 uniapp 技术。 微信阅读小程序是一个很好的项目,使用了SSM(Spring + Spring MVC + MyBatis)框架 、 前端(Vue.js)和 uniapp 技术。
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。