数据集是训练集、验证集、测试集的BP神经网络图像分类算法代码
时间: 2024-10-15 10:25:27 浏览: 18
Iris数据集BP神经网络实例代码.rar_BP iris_BP Iris _BP神经网络iris_Iris数据集bp_iri
在使用 BP(Back Propagation)神经网络进行图像分类时,通常会将数据集划分为三个部分:训练集、验证集和测试集。以下是简化的Python代码示例,使用Keras库(基于TensorFlow)来构建和训练一个简单的卷积神经网络(CNN)模型:
```python
# 导入所需库
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.utils import to_categorical
# 加载CIFAR-10数据集,包括训练集和测试集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 数据预处理
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
# 定义模型结构
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=x_train.shape[1:]))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax')) # 输出层,10表示10个类别
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 划分训练集、验证集(假设80%的数据用于训练,10%用于验证)
validation_split = 0.2
x_val = x_train[:int(validation_split * len(x_train))]
partial_x_train = x_train[int(validation_split * len(x_train)):]
y_val = y_train[:int(validation_split * len(y_train))]
partial_y_train = y_train[int(validation_split * len(y_train)):]
# 训练模型
history = model.fit(partial_x_train, partial_y_train,
epochs=20,
batch_size=64,
validation_data=(x_val, y_val))
# 测试模型性能
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test accuracy: {test_acc}")
阅读全文