knn算法中的距离度量欧几里得距离和曼哈顿距离
时间: 2024-05-06 22:13:26 浏览: 253
在KNN(K-Nearest Neighbors)算法中,距离度量是一种用于衡量样本之间相似性的方法。常用的距离度量包括欧几里得距离和曼哈顿距离。
1. 欧几里得距离(Euclidean Distance):
欧几里得距离是最常见的距离度量方法,它基于两点之间的直线距离。对于二维空间中的两个点P(x1, y1)和Q(x2, y2),欧几里得距离可以通过以下公式计算:
d(P, Q) = √((x2 - x1)^2 + (y2 - y1)^2)
在多维空间中,欧几里得距离的计算方式类似,只需将上述公式扩展到多个维度。
2. 曼哈顿距离(Manhattan Distance):
曼哈顿距离是另一种常用的距离度量方法,它基于两点之间的城市街区距离(也称为曼哈顿街区距离)。对于二维空间中的两个点P(x1, y1)和Q(x2, y2),曼哈顿距离可以通过以下公式计算:
d(P, Q) = |x2 - x1| + |y2 - y1|
在多维空间中,曼哈顿距离的计算方式类似,只需将上述公式扩展到多个维度。
阅读全文