coco数据集的增强代码
时间: 2024-04-20 21:21:00 浏览: 263
coco数据集所需代码.zip
COCO数据集的增强代码主要包括以下几个步骤:
1. 读取COCO数据集的图片和标注信息;
2. 对图片进行预处理,如缩放、裁剪等;
3. 对标注信息进行处理,如坐标变换、类别编码等;
4. 将处理后的图片和标注信息保存为新的数据集。
以下是一个简单的COCO数据集增强代码示例:
```python
import os
import json
import cv2
import numpy as np
from PIL import Image
def load_coco_annotations(json_file):
with open(json_file, 'r') as f:
data = json.load(f)
return data
def preprocess_image(image, target_size):
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
image = image.resize(target_size, Image.BILINEAR)
return np.array(image)
def process_annotations(annotations, target_size):
for ann in annotations:
ann['bbox'] = [ann['bbox'] * target_size, ann['bbox'] * target_size,
ann['bbox'] * target_size, ann['bbox'] * target_size]
return annotations
def save_augmented_data(images, annotations, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for i, (image, ann) in enumerate(zip(images, annotations)):
img_file = os.path.join(output_dir, f'{i}.jpg')
cv2.imwrite(img_file, image)
with open(os.path.join(output_dir, f'{i}.json'), 'w') as f:
json.dump(ann, f)
def main():
input_json = 'path/to/coco/annotations.json'
output_dir = 'path/to/output/directory'
target_size = (224, 224)
annotations = load_coco_annotations(input_json)
images = []
processed_annotations = []
for ann in annotations:
image = cv2.imread(ann['image_file'])
image = preprocess_image(image, target_size)
images.append(image)
ann['bbox'] = [ann['bbox'] / target_size, ann['bbox'] / target_size,
ann['bbox'] / target_size, ann['bbox'] / target_size]
processed_annotations.append(ann)
save_augmented_data(images, processed_annotations, output_dir)
if __name__ == '__main__':
main()
```
这个示例代码首先读取COCO数据集的标注信息,然后对每张图片进行预处理(缩放),接着对标注信息进行处理(坐标变换),最后将处理后的图片和标注信息保存为新的数据集。
阅读全文