transformer模型架构流程图
时间: 2024-10-10 13:13:46 浏览: 82
Transformer模型是一种基于自注意力机制的深度学习模型,主要用于处理序列数据,比如自然语言理解和生成任务。它的核心结构可以分为以下几个步骤:
1. **输入嵌入**:首先将文本转换成一系列的词或字符向量,通过词汇表编码每个单词到特定的数值表示。
2. **位置编码**:为了保留词语之间的顺序信息,除了词嵌入外,还会添加位置编码向量。
3. **多层自注意力模块**(Self-Attention Layer):这是Transformer的核心部分,它会计算所有输入元素之间的注意力权重,并根据这些权重加权求和,形成新的上下文向量。这个过程允许模型在处理长距离依赖时表现优秀。
4. **前馈神经网络(FFN)**:经过自注意力层之后,接着是一个全连接层(Feedforward Network),对自注意力层的结果进行进一步变换。
5. **残差连接和层归一化**:这两个组件帮助信息在网络中流动,并防止梯度消失或爆炸。残差连接是指直接连接原始输入到当前层的输出,而层归一化是对每一层的输出进行标准化。
6. **堆叠多层**:上述步骤会在多层Transformer块中重复,每增加一层,模型可以学习更复杂的表示。
7. **输出阶段**:最后一层通常会经过线性变换和softmax函数(对于分类任务)或直接输出(对于生成任务),得到最终的预测结果。
相关问题
vision transformer模型流程详细介绍
Vision Transformer(ViT)是一种基于Transformer架构的视觉模型,它将图像分割为一组固定大小的块,并将每个块视为序列元素,以便将其输入到Transformer编码器中。下面是ViT模型的详细流程介绍:
1. 输入图像的预处理:将输入图像分为固定大小的块,每个块都是一个向量,这些向量被展平为一维,形成一个序列。
2. 嵌入层:将每个序列元素通过嵌入层转换为d维的向量表示,其中d是嵌入维度。
3. 位置编码:为了使模型能够感知序列元素之间的位置关系,ViT使用位置编码对序列中的每个元素进行编码。位置编码是一个向量,其大小与嵌入维度相同,其中每个元素的值由其位置和维度计算得出。
4. Transformer编码器:ViT使用多层Transformer编码器来学习序列元素之间的关系。每个编码器由多头自注意力层和前馈神经网络层组成,其中自注意力层可以帮助模型学习序列元素之间的长程依赖关系,前馈神经网络层可以对每个元素进行非线性变换。
5. Pooling层:在经过多个Transformer编码器后,ViT使用一个全局平均池化层来将序列元素的表示压缩成一个向量,该向量被认为是整个图像的表示。
6. 分类层:最后,通过一个具有softmax激活函数的线性层对全局平均池化层的输出进行分类,该层的输出是每个类别的概率分布。
总之,ViT通过将图像分为一组固定大小的块,并将每个块视为序列元素,然后使用Transformer编码器来学习序列元素之间的关系,从而实现了对图像的分类任务。
vision transformer模型图
### Vision Transformer (ViT) 模型架构概述
Vision Transformer (ViT) 将图像分割成固定大小的多个patch序列,这些patch被线性嵌入并附加位置编码后输入到标准的Transformer Encoder中[^1]。整个过程保持了原始Transformer的设计理念,即通过自注意力机制来捕捉全局依赖关系。
#### 图像处理流程
- **Patch Embedding**: 输入图像首先被划分为不重叠的小块(patch),每个patch会被展平成一维向量并通过线性变换映射至指定维度的空间内。
- **Position Encoding**: 为了保留空间信息,在得到的patch embedding上加上可学习的位置编码。
```python
class PatchEmbed(nn.Module):
""" Image to Patch Embedding """
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
```
#### 主干网络 - Transformer Encoders
核心部分由一系列堆叠的标准Transformer Encoder组成,每一层都包含了多头自注意模块(Multi-head Self-Attention Layer) 和前馈神经网络(Feed Forward Network)[^2]:
```python
import torch.nn as nn
from transformers import BertConfig, BertModel
config = BertConfig(
hidden_size=embed_dim,
num_hidden_layers=num_layers,
num_attention_heads=num_heads,
intermediate_size=intermediate_size,
)
transformer_encoder = BertModel(config)
```
#### 输出阶段
最终输出通常会经过一层全连接层转换为目标类别数目的logits值用于分类任务。对于其他下游任务,则可以根据需求调整最后一层的具体实现方式[^3]。
![ViT Architecture](https://miro.medium.com/v2/resize:fit:1400/format:webp/1*HkzUZbLJvGQyPjW9XaYrDg.png "Vision Transformer Model Architecture")
阅读全文
相关推荐
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)