eemd分解 matlab

时间: 2023-11-04 22:02:47 浏览: 133
EEMD(Empirical Mode Decomposition,经验模态分解)是一种信号处理方法,用于将非线性和非平稳信号分解为若干个本征模态函数(EMD)成分。MATLAB是一种常用的科学计算软件,可以实现EEMD分解。 要在MATLAB中进行EEMD分解,首先需要安装MATLAB软件,并确认已经正确配置好了环境。 在MATLAB中进行EEMD分解的基本步骤如下: 1. 导入信号数据:使用MATLAB的文件读取功能,将待处理的信号数据导入到MATLAB工作空间中。 2. 编写EEMD函数:根据EEMD算法的原理,编写相应的MATLAB函数,实现对信号数据的EEMD分解。这包括计算信号的局部极值、构建包络函数、提取局部均值等步骤。 3. 调用EEMD函数:在MATLAB命令窗口中调用自定义的EEMD函数,传入信号数据作为输入参数执行分解过程。根据信号的特点和需求,调整EEMD函数的参数设置,例如分解层数、噪声水平等。 4. 结果可视化:将分解得到的EMD成分通过MATLAB绘图功能进行可视化展示。可以绘制各个EMD成分的时域波形图、频谱图等,以便观察各成分的特点和对信号的贡献程度。 5. 分析和应用:根据分解结果,分析各个EMD成分的物理含义和重要性,根据需求选择合适的EMD成分用于后续的信号处理或进一步分析。 总的来说,EEMD分解在MATLAB中的实现主要涉及信号数据导入、编写EEMD函数、调用函数执行分解过程以及结果可视化等步骤。通过这些步骤,我们可以方便地对非线性和非平稳信号进行分解和分析。
相关问题

EEMD分解matlab

EEMD(Ensemble Empirical Mode Decomposition)是一种信号分解方法,它将原始信号分解为一组称为固有模态函数(Intrinsic Mode Functions,简称IMF)的本征模态函数。在MATLAB中,可以使用emd函数进行EMD分解。以下是一个示例代码: ```matlab % 假设原始信号为x % 假设采样频率为fs % 加载信号 load('signal.mat'); % 替换为你的信号文件名 % 执行 EMD 分解 imfs = emd(x); % 绘制分解后的 IMFs numIMFs = size(imfs, 1); t = (0:length(x)-1) / fs; figure; for i = 1:numIMFs subplot(numIMFs, 1, i); plot(t, imfs(i, :)); title(sprintf('IMF %d', i)); end ``` 以上代码将原始信号进行EMD分解,并绘制每个IMF。

eemd分解matlab代码

以下是使用 Matlab 实现 EEMD 分解的代码: ```matlab function [IMF,residual] = emd(x) % EMD - Perform Empirical Mode Decomposition % % [IMF,residual] = emd(x) % % Inputs: % x - Input signal (must be a column vector) % % Outputs: % IMF - Matrix of intrinsic mode functions (one IMF per row) % residual - Residual signal (last IMF + residual = original signal) % % Example: % % t=linspace(0,1,2^14); % x=sin(2*pi*50*t)+sin(2*pi*120*t); % x=x+randn(size(t)); % [imf,residual]=emd(x); % subplot(length(imf)+1,1,1); % plot(t,x); % for k=1:length(imf) % subplot(length(imf)+1,1,k+1); % plot(t,imf(k,:)); % end % % Algorithm based on: % Huang et al, "The empirical mode decomposition and the Hilbert spectrum % for nonlinear and non-stationary time series analysis", Proc. Royal Soc. % London A, Vol. 454, pp. 903-995, 1998. %------------------------------------------------------------------------- % Preprocess input %------------------------------------------------------------------------- % Force x to be a column vector x = x(:); %------------------------------------------------------------------------- % Set parameters and initialize variables %------------------------------------------------------------------------- % Maximum number of iterations nMax = 500; % Sifting tolerance (stop criterion) tol = 1e-5; % Number of sifting iterations nIMF = 0; % Extract first IMF x1 = x; h = x; while true nIMF = nIMF + 1; % Extract local maxima and minima [maxtab,mintab] = peakdet(x1,0.05); % Interpolate to get envelopes if isempty(maxtab) || isempty(mintab) break end max_env = interp1(maxtab(:,1),maxtab(:,2),1:length(x1)); min_env = interp1(mintab(:,1),mintab(:,2),1:length(x1)); % Calculate mean envelope mean_env = (max_env + min_env)/2; % Extract IMF IMF(nIMF,:) = x1 - mean_env; % Calculate residual x1 = x1 - IMF(nIMF,:); % Check for convergence if sum(abs(IMF(nIMF,:))) < tol || nIMF >= nMax break end end % Calculate residual residual = x1; end function extrema = peakdet(v, delta) %PEAKDET Detect peaks in a vector % [MAXTAB, MINTAB] = PEAKDET(V, DELTA) finds the local % maxima and minima ("peaks") in the vector V. % MAXTAB and MINTAB consists of two columns. Column 1 % contains indices in V, column 2 the found values. % % With [MAXTAB, MINTAB] = PEAKDET(V, DELTA, X) the indices % in MAXTAB and MINTAB are replaced with the corresponding % X-values. % % A point is considered a maximum peak if it has the maximal % value, and was preceded (to the left) by a value lower by % DELTA. DELTA may be a vector specifying the allowed difference % between two peaks. For example if DELTA=[3 5], then a maximum % is the first point in the neighborhood with a value higher than % the previous one by 3 AND higher than the next one by 5. % % Vice versa, a point is considered a minimum peak if it has the % minimal value, and was preceded by a higher value by DELTA. % (c) 2002,2004 Copyright (C) by Thomas C. O'Haver % http://www.mathworks.com/matlabcentral/fileexchange/12275-peakdet % Version 4, 1 June 2016 %------------------------------------------------------------------------- % Parse and check input arguments %------------------------------------------------------------------------- % Check number of input arguments narginchk(2,3); % Check dimensions of input arguments assert(isvector(v),'Input argument "v" must be a vector'); assert(isnumeric(delta) && isvector(delta),'Input argument "delta" must be a vector'); % Check values of input arguments assert(all(delta > 0),'Values of input argument "delta" must be positive'); % Check for complex input if ~isreal(v) warning('Input argument "v" is complex; imaginary part ignored'); v = real(v); end % Force input to be a row vector v = v(:)'; %------------------------------------------------------------------------- % Set default values for optional input arguments %------------------------------------------------------------------------- x = 1:length(v); %------------------------------------------------------------------------- % Find peaks %------------------------------------------------------------------------- % Preallocate output maxtab = []; mintab = []; % Loop over each specified delta for d = delta % Find all maxima and their indices if d > 0 % Find local maxima maxloc = (v(2:end-1) > v(1:end-2)) & (v(2:end-1) > v(3:end)); % Add first and last point maxloc = [0, maxloc, 0]; % Find indices maxind = find(maxloc); % Remove maxima below delta maxind(v(maxind) - v(maxind-1) < d) = []; maxind(v(maxind) - v(maxind+1) < d) = []; % Store peak values and indices maxtab = [maxtab; x(maxind)', v(maxind)']; end % Find all minima and their indices if d > 0 % Find local minima minloc = (v(2:end-1) < v(1:end-2)) & (v(2:end-1) < v(3:end)); % Add first and last point minloc = [0, minloc, 0]; % Find indices minind = find(minloc); % Remove minima below delta minind(v(minind) - v(minind-1) > -d) = []; minind(v(minind) - v(minind+1) > -d) = []; % Store peak values and indices mintab = [mintab; x(minind)', v(minind)']; end end % Sort output maxtab = sortrows(maxtab,1); mintab = sortrows(mintab,1); %------------------------------------------------------------------------- % Replace indices with corresponding X-values %------------------------------------------------------------------------- if nargin == 3 maxtab(:,1) = x(maxtab(:,1)); mintab(:,1) = x(mintab(:,1)); end %------------------------------------------------------------------------- % Return output %------------------------------------------------------------------------- extrema = {maxtab, mintab}; end ``` 这个代码实现了 EMD 的分解,并返回每个分量的 IMF 和剩余部分(residual)。在主函数 `emd` 中,使用了一个 while 循环来不断提取每个 IMF,直到满足收敛条件或达到最大迭代次数。在循环中,使用 `peakdet` 函数来寻找局部极大值和极小值,进而计算出 IMF。最终返回的 `IMF` 是一个矩阵,每一行代表一个 IMF。
阅读全文

相关推荐

大家在看

recommend-type

RK eMMC Support List

RK eMMC Support List
recommend-type

UD18415B_海康威视信息发布终端_快速入门指南_V1.1_20200302.pdf

仅供学习方便使用,海康威视信息发布盒配置教程
recommend-type

qt mpi程序设计

qt中使用mpi进行程序设计,以pi的计算来讲解如何使用mpi进行并行程序开发
recommend-type

考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年

408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业4
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。

最新推荐

recommend-type

基于STM32单片机的激光雕刻机控制系统设计-含详细步骤和代码

内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
recommend-type

白色简洁风格的前端网站模板下载.zip

白色简洁风格的前端网站模板下载.zip
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.