双向门控循环单元 matlab代码
时间: 2023-08-02 14:06:41 浏览: 95
超创新!效果超好!开普勒优化算法+双向门控循环单元网络+卷积神经网络+注意力机制的时间序列预测算法(附matlab代码实现)
Sure! Here's an example of bidirectional gated recurrent unit (BiGRU) implementation in MATLAB:
```matlab
function [output_sequence] = bidirectional_gru(input_sequence, hidden_size)
sequence_length = size(input_sequence, 2);
output_sequence = zeros(hidden_size, sequence_length);
% Forward GRU
forward_hidden_state = zeros(hidden_size, 1);
forward_update_gate = zeros(hidden_size, 1);
forward_reset_gate = zeros(hidden_size, 1);
forward_candidate = zeros(hidden_size, 1);
% Backward GRU
backward_hidden_state = zeros(hidden_size, 1);
backward_update_gate = zeros(hidden_size, 1);
backward_reset_gate = zeros(hidden_size, 1);
backward_candidate = zeros(hidden_size, 1);
% Initialize weights
W_zf_forward = rand(hidden_size, size(input_sequence, 1));
W_zb_backward = rand(hidden_size, size(input_sequence, 1));
U_zf_forward = rand(hidden_size, hidden_size);
U_zb_backward = rand(hidden_size, hidden_size);
b_z_forward = rand(hidden_size, 1);
b_z_backward = rand(hidden_size, 1);
W_rf_forward = rand(hidden_size, size(input_sequence, 1));
W_rb_backward = rand(hidden_size, size(input_sequence, 1));
U_rf_forward = rand(hidden_size, hidden_size);
U_rb_backward = rand(hidden_size, hidden_size);
b_r_forward = rand(hidden_size, 1);
b_r_backward = rand(hidden_size, 1);
W_cf_forward = rand(hidden_size, size(input_sequence, 1));
W_cb_backward = rand(hidden_size, size(input_sequence, 1));
U_cf_forward = rand(hidden_size, hidden_size);
U_cb_backward = rand(hidden_size, hidden_size);
b_c_forward = rand(hidden_size, 1);
b_c_backward = rand(hidden_size, 1);
% Forward pass
for t = 1:sequence_length
x = input_sequence(:, t);
forward_update_gate = sigmoid(W_zf_forward * x + U_zf_forward * forward_hidden_state + b_z_forward);
forward_reset_gate = sigmoid(W_rf_forward * x + U_rf_forward * forward_hidden_state + b_r_forward);
forward_candidate = tanh(W_cf_forward * x + U_cf_forward * (forward_reset_gate .* forward_hidden_state) + b_c_forward);
forward_hidden_state = (1 - forward_update_gate) .* forward_hidden_state + forward_update_gate .* forward_candidate;
output_sequence(:, t) = forward_hidden_state;
end
% Backward pass
for t = sequence_length:-1:1
x = input_sequence(:, t);
backward_update_gate = sigmoid(W_zb_backward * x + U_zb_backward * backward_hidden_state + b_z_backward);
backward_reset_gate = sigmoid(W_rb_backward * x + U_rb_backward * backward_hidden_state + b_r_backward);
backward_candidate = tanh(W_cb_backward * x + U_cb_backward * (backward_reset_gate .* backward_hidden_state) + b_c_backward);
backward_hidden_state = (1 - backward_update_gate) .* backward_hidden_state + backward_update_gate .* backward_candidate;
output_sequence(:, t) = output_sequence(:, t) + backward_hidden_state;
end
end
function [output] = sigmoid(x)
output = 1 ./ (1 + exp(-x));
end
```
You can use the `bidirectional_gru` function to compute the output sequence from an input sequence. The `input_sequence` is a matrix of size `(input_size, sequence_length)`, where `input_size` is the size of each input vector and `sequence_length` is the length of the input sequence. The `hidden_size` parameter determines the size of the hidden state of the GRU.
Please note that this is a basic implementation and you may need to modify it based on your specific requirements.
阅读全文