delete-by-query和elasticsearch版本对应

时间: 2023-09-02 19:02:38 浏览: 127
在Elasticsearch中,delete-by-query是一种操作,用于根据特定的查询条件从索引中删除文档。然而,要注意的是,delete-by-query仅在特定的Elasticsearch版本中可用。 在早期的Elasticsearch版本中(例如5.x和6.x版本),delete-by-query插件是通过安装另外的插件来实现的。需要单独下载并安装delete-by-query插件,然后才能使用该功能。这意味着在这些版本中,官方的Elasticsearch发行版中并不包含delete-by-query功能。 然而,从Elasticsearch 7.0版本开始,delete-by-query被集成为Elasticsearch的核心功能,不再需要单独安装插件。这意味着从Elasticsearch的7.0版本及以后的版本中,delete-by-query已成为官方支持的操作,用户无需额外安装插件即可使用该功能。 因此,要使用delete-by-query功能,需要根据所使用的Elasticsearch版本进行判断。如果使用的是早期版本,如5.x或6.x,就需要下载并安装相应的delete-by-query插件。而如果使用的是7.0版本或之后的版本,delete-by-query已被纳入核心功能中,无需额外安装插件。 总之,delete-by-query功能的可用性与Elasticsearch版本密切相关,用户需要根据所使用的版本来确定是否需要安装插件或直接使用官方发行版。
相关问题

Elasticsearch使用

Elasticsearch是一个分布式搜索和分析引擎,它提供了强大的全文搜索功能和实时数据分析能力。下面是一些常用的Elasticsearch使用方式和操作示例: 1. 索引数据:在Elasticsearch中,你需要将数据索引到一个或多个索引中。索引是一种结构化的数据存储方式,类似于数据库中的表。你可以使用Elasticsearch提供的API(如REST API或Elasticsearch客户端库)来索引数据。 ```java IndexRequest request = new IndexRequest("my_index"); // 指定索引名称 request.id("1"); // 指定文档ID request.source("field1", "value1", "field2", "value2"); // 指定字段和对应的值 IndexResponse response = client.index(request, RequestOptions.DEFAULT); ``` 2. 搜索数据:使用Elasticsearch进行全文搜索非常强大和灵活。你可以构建各种查询条件来匹配文档,并按照相关性进行排序和过滤。 ```java SearchRequest request = new SearchRequest("my_index"); // 指定索引名称 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); sourceBuilder.query(QueryBuilders.matchQuery("field", "value")); // 匹配字段和值 request.source(sourceBuilder); SearchResponse response = client.search(request, RequestOptions.DEFAULT); SearchHits hits = response.getHits(); for (SearchHit hit : hits) { String id = hit.getId(); Map<String, Object> sourceAsMap = hit.getSourceAsMap(); // 处理搜索结果 } ``` 3. 聚合和分析:Elasticsearch提供了丰富的聚合功能,用于对数据进行分组、计数、求和等操作,以便进行数据分析和可视化。 ```java SearchRequest request = new SearchRequest("my_index"); // 指定索引名称 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); TermsAggregationBuilder aggregation = AggregationBuilders.terms("by_field").field("field"); // 按字段进行分组 sourceBuilder.aggregation(aggregation); request.source(sourceBuilder); SearchResponse response = client.search(request, RequestOptions.DEFAULT); Terms terms = response.getAggregations().get("by_field"); for (Terms.Bucket bucket : terms.getBuckets()) { String key = bucket.getKeyAsString(); long docCount = bucket.getDocCount(); // 处理聚合结果 } ``` 4. 更新和删除数据:如果你需要更新或删除索引中的文档,可以使用相应的API进行操作。 ```java UpdateRequest request = new UpdateRequest("my_index", "1"); // 指定索引名称和文档ID request.doc("field", "new_value"); // 更新字段的值 UpdateResponse response = client.update(request, RequestOptions.DEFAULT); ``` ```java DeleteRequest request = new DeleteRequest("my_index", "1"); // 指定索引名称和文档ID DeleteResponse response = client.delete(request, RequestOptions.DEFAULT); ``` 这些只是Elasticsearch的一些基本使用方式和操作示例,实际使用中还有更多的功能和配置选项可供探索。你可以参考Elasticsearch的官方文档和API参考来深入了解和使用Elasticsearch。祝你使用Elasticsearch愉快!
阅读全文

相关推荐

大家在看

recommend-type

MotorContral.rar_VC++ 电机控制_上位机_电机_电机 上位机_电机vc上位机

这是电机控制方面上位机程序,需要vc++6.0开发,对学习电机控制很有帮助.
recommend-type

一种基于STM32的智能交通信号灯设计的研究.rar

一种基于STM32的智能交通信号灯设计的研究.rar
recommend-type

台达变频器资料.zip

台达变频器
recommend-type

【管道瞬变流】特征线法管道瞬变流计算【含Matlab源码 2773期】.zip

Matlab领域上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、物理应用 仿真:导航、地震、电磁、电路、电能、机械、工业控制、水位控制、直流电机、平面电磁波、管道瞬变流、刚度计算 光学:光栅、杨氏双缝、单缝、多缝、圆孔、矩孔衍射、夫琅禾费、干涉、拉盖尔高斯、光束、光波、涡旋 定位问题:chan、taylor、RSSI、music、卡尔曼滤波UWB 气动学:弹道、气体扩散、龙格库弹道 运动学:倒立摆、泊车 天体学:卫星轨道、姿态 船舶:控制、运动 电磁学:电场分布、电偶极子、永磁同步、变压器
recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别

最新推荐

recommend-type

java-high-level-REST-client.pdf

客户端的版本与开发时所对应的 Elasticsearch 版本相同。它接受与 TransportClient 相同的请求参数,并返回相同的响应对象。如果你需要将应用程序从 TransportClient 迁移到新的 REST 客户端,可以参考“迁移指南”...
recommend-type

elasticsearch的详细安装和简单使用

可以从 Elasticsearch 官方网站下载安装包,选择对应的操作系统和版本。在本文中,我们使用的是 6.2.4 版本。 3. 配置 Elasticsearch 在解压后的 config 文件夹中,找到 elasticsearch.yml 文件,并添加以下配置:...
recommend-type

Elasticsearch 开机自启脚本

`start` 用于启动Elasticsearch,这里使用 `su` 命令切换到指定的Elasticsearch用户(例如 `es-admin`),然后进入Elasticsearch的安装目录并执行 `bin/elasticsearch` 文件以后台模式启动服务。`stop` 通过查找并杀...
recommend-type

Spring Boot整合Elasticsearch实现全文搜索引擎案例解析

Elasticsearch是一个基于Lucene的开源、分布式、实时的搜索和分析引擎,特别适合处理大规模的结构化数据。它支持全文搜索、聚合分析以及复杂的实时数据分析。 Spring Boot,作为Spring框架的一部分,简化了Spring...
recommend-type

基于ADS-B和RTL-SDR的空中交通监视系统

《基于ADS-B和RTL-SDR的空中交通监视系统》 空中交通监视系统在现代航空领域扮演着至关重要的角色,随着民航业的快速发展,ADS-B(广播式自动相关监视)技术逐渐成为提升飞行安全和效率的关键。ADS-B利用GPS定位...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。