center_h = (torch.arange(in_height, device=device) + offset_h) center_w = (torch.arange(in_width, device=device) + offset_w) shift_y, shift_x = torch.meshgrid(center_h, center_w) shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)

时间: 2024-04-12 17:32:59 浏览: 8
这段代码是用于计算特征图中每个像素点的中心坐标。首先,通过torch.arange函数生成从0到in_height-1和0到in_width-1的两个张量center_h和center_w,其中offset_h和offset_w是偏移值。然后,使用torch.meshgrid函数生成两个矩阵shift_y和shift_x,这两个矩阵的元素分别为center_h和center_w中的所有组合。最后,通过reshape函数将shift_y和shift_x从矩阵形式转化为一维向量。这样就得到了特征图中每个像素点的中心坐标。
相关问题

ngpus_per_node = torch.cuda.device_count()

`ngpus_per_node = torch.cuda.device_count()` 是用于获取当前计算机上可用的 GPU 数量。这行代码使用 PyTorch 库中的 `torch.cuda.device_count()` 函数来获取当前计算机上可用的 GPU 数量,然后将其赋值给变量 `ngpus_per_node`。 在深度学习中,使用 GPU 进行加速是常见的做法。由于深度学习模型通常需要处理大量的数据,使用 CPU 运算往往会非常耗时,而使用 GPU 运算则可以显著加快模型的训练和推断速度。因此,在进行深度学习任务时,通常会使用 GPU 资源来进行计算。 需要注意的是,如果计算机上没有可用的 GPU,`torch.cuda.device_count()` 函数将返回 0。因此,在进行深度学习任务时,需要先检查计算机上是否有可用的 GPU 资源,以确保程序能够正常运行。

以下代码存在无法求导反向传播的bug,请你修改:# 反向LSTM input_backward = torch.flip(input, [0]) outputs_backward = [] for t in range(input_backward.size(0)): x = input_backward[t] i = torch.sigmoid(torch.matmul(x, self.W_i_backward) + torch.matmul(h_backward[-1], self.U_i_backward) + self.b_i_backward) f = torch.sigmoid(torch.matmul(x, self.W_f_backward) + torch.matmul(h_backward[-1], self.U_f_backward) + self.b_f_backward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_backward) + torch.matmul(h_backward[-1], self.U_c_backward) + self.b_c_backward) c_backward[-1] = f * c_backward[-1] + i * c_tilde o = torch.matmul(x, self.W_o_backward) + torch.matmul(h_backward[-1], self.U_o_backward) + self.b_o_backward o = torch.sigmoid(o) h_backward[-1] = o * torch.tanh(c_backward[-1]) outputs_backward.append(h_backward[-1]) outputs_backward = torch.flip(torch.stack(outputs_backward), [0])

这段代码看起来没有明显的无法求导反向传播的 bug,但是如果存在问题的话可能是因为某些操作的输入没有进行 requires_grad=True 的设置。可以尝试添加以下代码,保证所有涉及到反向传播的张量都设置了 requires_grad=True: ``` input_backward.requires_grad_() self.W_i_backward.requires_grad_() self.U_i_backward.requires_grad_() self.b_i_backward.requires_grad_() self.W_f_backward.requires_grad_() self.U_f_backward.requires_grad_() self.b_f_backward.requires_grad_() self.W_c_backward.requires_grad_() self.U_c_backward.requires_grad_() self.b_c_backward.requires_grad_() self.W_o_backward.requires_grad_() self.U_o_backward.requires_grad_() self.b_o_backward.requires_grad_() ``` 另外,如果在模型训练时发现该部分无法进行反向传播,可以尝试将该部分的代码放到 `torch.no_grad()` 中,避免该部分的梯度被累加。 ``` with torch.no_grad(): input_backward = torch.flip(input, [0]) outputs_backward = [] for t in range(input_backward.size(0)): x = input_backward[t] i = torch.sigmoid(torch.matmul(x, self.W_i_backward) + torch.matmul(h_backward[-1], self.U_i_backward) + self.b_i_backward) f = torch.sigmoid(torch.matmul(x, self.W_f_backward) + torch.matmul(h_backward[-1], self.U_f_backward) + self.b_f_backward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_backward) + torch.matmul(h_backward[-1], self.U_c_backward) + self.b_c_backward) c_backward[-1] = f * c_backward[-1] + i * c_tilde o = torch.matmul(x, self.W_o_backward) + torch.matmul(h_backward[-1], self.U_o_backward) + self.b_o_backward o = torch.sigmoid(o) h_backward[-1] = o * torch.tanh(c_backward[-1]) outputs_backward.append(h_backward[-1]) outputs_backward = torch.flip(torch.stack(outputs_backward), [0]) ```

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

最新推荐

recommend-type

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl离线安装包linux系统x86_64

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl torchvision-0.8.2+cu110-cp37-cp37m-linux_x86_64.whl 由于超过1G无法上传,给的是百度云链接!!!!!需自行下载
recommend-type

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。