matlab随机森林分类问题,有3个特征项“美食、餐饮、酒店”,1个目标项“电动自行车”,验证集300条数据,测试集100条数据,请写出4折交叉验证程序
时间: 2024-09-07 10:05:44 浏览: 41
针对给定的特征和目标,我们可以编写如下的MATLAB随机森林分类问题4折交叉验证程序,假设数据已经存储在名为'data.mat'的MAT文件中,其中字段'responses'对应目标项,'features'对应特征项。
首先,你需要导入数据并预处理:
```matlab
% 导入数据
load('data.mat');
% 提取特征和响应
X_train = features(training(cvindex, :), :); % 切割训练集特征
y_train = responses(training(cvindex, :)); % 切割训练集目标
X_test = features(testing(cvindex, :), :); % 切割测试集特征
y_test = responses(testing(cvindex, :)); % 切割测试集目标
```
接下来,创建随机森林模型并进行4折交叉验证:
```matlab
nTrees = 100; % 随机森林中树的数量
Mdl = TreeBagger(nTrees, X_train, y_train, 'Method', 'classification'); % 创建分类器
% 4折交叉验证
kfold = cvpartition(numel(y_train), 'HoldOut', 0.25); % 4折分割
cvAccuracy = zeros(1, kfold.KFold);
for i = 1:kfold.KFold
% 训练集
idxTrain = training(kfold, i);
X_foldTrain = X_train(idxTrain, :);
y_foldTrain = y_train(idxTrain);
% 测试集
idxTest = find(kfold.test == i);
X_foldTest = X_train(idxTest, :);
y_foldTest = y_train(idxTest);
% 训练随机森林
trainedMdl = TreeBagger(nTrees, X_foldTrain, y_foldTrain);
% 预测并计算准确性
predictions = predict(trainedMdl, X_foldTest);
cvAccuracy(i) = sum(predictions == y_foldTest) / numel(y_foldTest);
end
```
最后,计算平均准确度和评估模型:
```matlab
meanCVAccuracy = mean(cvAccuracy);
fprintf('4-fold cross-validation accuracy: %.2f%%\n', meanCVAccuracy * 100);
% 对于测试集评估
predictions = predict(Mdl, X_test);
testAccuracy = sum(predictions == y_test) / numel(y_test);
fprintf('Test set accuracy: %.2f%%\n', testAccuracy * 100);
```
阅读全文