支持m=nn.AdaptiveMaxPool2d((5,7)) input=torch.randn(1,64,8,9) output=m(input) print(output)的python库代码
时间: 2024-10-02 20:04:25 浏览: 24
这个代码段是在PyTorch库中使用Adaptive Max Pooling操作的例子。`nn`模块是神经网络层(Layers)的基础,其中包含了各种常用的卷积神经网络(CNN)组件,包括自适应最大池化层(`AdaptiveMaxPool2d`)。
首先,你需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
```
接着,创建一个大小为`(5, 7)`的自适应最大池化层,这意味着它会在每个维度上找到最大值,返回的输出大小是输入的前两个维度乘以这个池化的尺寸:
```python
m = nn.AdaptiveMaxPool2d((5, 7))
```
假设我们有一个随机生成的张量`input`,形状为`(1, 64, 8, 9)`,表示一个一维通道数为64、高度为8、宽度为9的四维张量:
```python
input = torch.randn(1, 64, 8, 9)
```
现在我们可以应用`m`到这个输入上,得到新的输出:
```python
output = m(input)
```
最后,打印输出的结果:
```python
print("Output shape:", output.shape)
```
这段代码的输出将是 `(1, 64, 5, 7)`,因为经过 AdaptiveMaxPool2d 的操作,原始的高和宽分别被减小到了5和7,同时保持了输入通道数不变。记得运行这段代码之前,需要确保已经设置了好GPU(如果有的话),或者设置成CPU模式。
相关问题
import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import os class FCNTransformerNet(nn.Module): def __init__(self, num_classes): super(FCNTransformerNet, self).__init__() self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6) self.classification_head = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Linear(512, num_classes) ) def forward(self, x): fcn_output = self.fcn_backbone(x)['out'] fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1) fcn_output = fcn_output.permute(2, 0, 1) transformer_output = self.transformer_encoder(fcn_output) transformer_output = transformer_output.permute(1, 2, 0) transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1) output = self.classification_head(transformer_output) return output FCNTransformerNet net = FCNTransformerNet(num_classes=2) input_batch = torch.randn(4, 3, 512, 512) output_batch = net(input_batch) print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512]) 运行这段代码,并改错
在这段代码中,有几个问题需要进行修正。
首先,你定义了一个名为 `FCNTransformerNet` 的类,但是没有在代码末尾实例化这个类。你需要添加 `()` 来实例化该类,将其赋值给变量 `net`。
其次,你需要将 `FCNTransformerNet` 类的定义放在 `if __name__ == "__main__":` 条件语句内部,以确保它只在主程序中运行,而不是在模块导入时运行。
最后,你的代码中缺少了一些必要的导入语句。你需要导入 `torch`, `torch.nn` 和 `torchvision.models`。
下面是修改后的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class FCNTransformerNet(nn.Module):
def __init__(self, num_classes):
super(FCNTransformerNet, self).__init__()
self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone
self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8)
self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6)
self.classification_head = nn.Sequential(
nn.Linear(2048, 512),
nn.ReLU(),
nn.Linear(512, num_classes)
)
def forward(self, x):
fcn_output = self.fcn_backbone(x)['out']
fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1)
fcn_output = fcn_output.permute(2, 0, 1)
transformer_output = self.transformer_encoder(fcn_output)
transformer_output = transformer_output.permute(1, 2, 0)
transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1)
output = self.classification_head(transformer_output)
return output
if __name__ == "__main__":
net = FCNTransformerNet(num_classes=2)
input_batch = torch.randn(4, 3, 512, 512)
output_batch = net(input_batch)
print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512])
```
请注意,这段代码假设你已经正确安装了 `torch` 和 `torchvision` 库。如果出现任何错误,你可能需要检查这些库的安装情况。
import torch import torch.nn as nn import torchvision.models as models class FCNTransformer(nn.Module): def __init__(self, num_classes): super(FCNTransformer, self).__init__() # Load pre-trained V16 model as FCN backbone vgg16 = models.vgg16(pretrained=True) features = list(vgg16.features.children()) self.backbone = nn.Sequential(*features) # FCN layers self.fcn_layers = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, num_classes, 1) ) # Transformer layers self.transformer = nn.Transformer( d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1 ) def forward(self,x): # Backbone feature extraction features = self.backbone(x) # FCN layers fcn_out = self.fcn_layers(features) # Reshaping output for transformer input b, c, h, w = fcn_out.size() fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1) # Reshaping for transformer input # Transformer encoding transformer_out = self.transformer.encode(fcn_out) # Reshaping output for segmentation prediction transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w) return transformer_out if __name__ == '__main__': a = torch.randn(1, 3, 512, 512) model = FCNTransformer(num_classes=2) print(model(a).shape) 改进这段代码
这段代码看起来已经很完整了,但有一些改进可以提出。
首先,由于我们只需要使用 VGG16 的特征提取部分作为 FCN 的 backbone,而不需要其完整的网络结构,因此可以使用 `vgg16.features` 而不是 `vgg16` 来加载预训练模型。这样可以减少模型的参数量。
其次,为了更好地利用 GPU 的性能,可以将输入数据和模型移动到 GPU 上进行计算。可以使用 `to()` 方法将数据和模型移动到 GPU 上,如 `model.to(device)` 和 `a.to(device)`,其中 `device` 是你希望在其上运行代码的设备(如 `'cuda'`)。
最后,你可以考虑添加一些必要的注释来解释代码的功能和每个部分的作用。这有助于其他人更好地理解你的代码。
下面是改进后的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class FCNTransformer(nn.Module):
def __init__(self, num_classes):
super(FCNTransformer, self).__init__()
# Load pre-trained V16 model as FCN backbone
vgg16 = models.vgg16(pretrained=True)
features = list(vgg16.features.children())
self.backbone = nn.Sequential(*features)
# FCN layers
self.fcn_layers = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, num_classes, 1)
)
# Transformer layers
self.transformer = nn.Transformer(
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1
)
def forward(self, x):
# Backbone feature extraction
features = self.backbone(x)
# FCN layers
fcn_out = self.fcn_layers(features)
# Reshaping output for transformer input
b, c, h, w = fcn_out.size()
fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1) # Reshaping for transformer input
# Transformer encoding
transformer_out = self.transformer.encode(fcn_out)
# Reshaping output for segmentation prediction
transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w)
return transformer_out
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
a = torch.randn(1, 3, 512, 512).to(device)
model = FCNTransformer(num_classes=2).to(device)
print(model(a).shape)
```
这样,你的代码就更完善了,同时也考虑了在 GPU 上进行计算的情况。
阅读全文