基于卷积神经网络的交通标志识别系统
时间: 2023-12-03 09:39:45 浏览: 138
基于卷积神经网络的交通标志识别系统是一种利用深度学习技术对交通标志进行自动识别的系统。其主要流程包括数据预处理、模型训练和测试三个步骤。
数据预处理 在数据预处理阶段,需要对交通标志图像进行预处理,包括图像的缩放、裁剪、旋转等操作,以便于后续的模型训练和测试。同时,还需要将图像转换为数字矩阵,以便于输入到卷积神经网络中。
模型训练 在模型训练阶段,需要选择合适的卷积神经网络模型,并对其进行训练。常用的卷积神经网络模型包括LeNet、AlexNet、VGG、GoogLeNet和ResNet等。在训练过程中,需要对模型进行优化,包括选择合适的损失函数、学习率和正则化等参数。
测试 在测试阶段,需要对训练好的模型进行测试,以评估其在新数据上的表现。常用的评估指标包括准确率、召回率和F1值等。同时,还需要对模型进行优化和调整,以提高其在新数据上的表现。
相关推荐


















