强化学习ddpg解决tsp
时间: 2023-12-10 22:35:33 浏览: 166
强化学习(Reinforcement Learning)是一种通过智能体与环境的交互来学习最优行为的机器学习方法。TSP(Traveling Salesman Problem)是一个NP难问题,即在给定的一些城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。DDPG(Deep Deterministic Policy Gradient)是一种基于策略梯度的深度强化学习算法,可以用于解决连续动作空间的问题。
因此,可以使用DDPG算法来解决TSP问题。具体来说,可以将每个城市看作一个状态,智能体需要在这些状态之间进行移动,并且需要在访问每个城市后回到起始城市。智能体的目标是最小化访问每个城市的总距离。在DDPG算法中,智能体的策略网络可以输出每个状态下应该采取的动作,而值网络可以评估每个状态下采取动作的价值。通过不断地与环境交互,智能体可以学习到最优的策略,从而解决TSP问题。
下面是一个使用DDPG算法解决TSP问题的代码示例:
```python
import numpy as np
import tensorflow as tf
import gym
# 定义智能体的策略网络和值网络
class Actor:
def __init__(self, sess, n_features, n_actions, lr=0.001):
self.sess = sess
self.s = tf.placeholder(tf.float32, [None, n_features], "state")
self.a = tf.placeholder(tf.float32, [None, n_actions], "action")
self.td_error = tf.placeholder(tf.float32, None, "td_error")
l1 = tf.layers.dense(
inputs=self.s,
units=30,
activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(0., .1),
bias_initializer=tf.constant_initializer(0.1),
name='l1'
)
mu = tf.layers.dense(
inputs=l1,
units=n_actions,
activation=tf.nn.tanh,
kernel_initializer=tf.random_normal_initializer(0., .1),
bias_initializer=tf.constant_initializer(0.1),
name='mu'
)
sigma = tf.layers.dense(
inputs=l1,
units=n_actions,
activation=tf.nn.softplus,
kernel_initializer=tf.random_normal_initializer(0., .1),
bias_initializer=tf.constant_initializer(0.1),
name='sigma'
)
global_step = tf.Variable(0, trainable=False)
self.mu, self.sigma = tf.squeeze(mu*2), tf.squeeze(sigma+0.1)
self.normal_dist = tf.distributions.Normal(self.mu, self.sigma)
self.action = tf.clip_by_value(self.normal_dist.sample(1), -2, 2)
with tf.name_scope('exp_v'):
log_prob = self.normal_dist.log_prob(self.a)
self.exp_v = log_prob * self.td_error
self.exp_v += 0.01*self.normal_dist.entropy()
with tf.name_scope('train'):
self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v, global_step=global_step)
def learn(self, s, a, td):
self.sess.run(self.train_op, {self.s: s, self.a: a, self.td_error: td})
def choose_action(self, s):
return self.sess.run(self.action, {self.s: s})
class Critic:
def __init__(self, sess, n_features, lr=0.01):
self.sess = sess
self.s = tf.placeholder(tf.float32, [None, n_features], "state")
self.v_ = tf.placeholder(tf.float32, [None, 1], "v_next")
self.r = tf.placeholder(tf.float32, None, 'r')
l1 = tf.layers.dense(
inputs=self.s,
units=30,
activation=tf.nn.relu,
kernel_initializer=tf.random_normal_initializer(0., .1),
bias_initializer=tf.constant_initializer(0.1),
name='l1'
)
self.v = tf.layers.dense(
inputs=l1,
units=1,
activation=None,
kernel_initializer=tf.random_normal_initializer(0., .1),
bias_initializer=tf.constant_initializer(0.1),
name='V'
)
with tf.name_scope('squared_TD_error'):
self.td_error = self.r + 0.9*self.v_ - self.v
self.loss = tf.square(self.td_error)
with tf.name_scope('train'):
self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)
def learn(self, s, r, s_):
v_ = self.sess.run(self.v, {self.s: s_})
td_error, _ = self.sess.run([self.td_error, self.train_op],
{self.s: s, self.v_: v_, self.r: r})
return td_error
# 定义环境
class TSPEnv(gym.Env):
def __init__(self, n_cities):
self.n_cities = n_cities
self.cities = np.random.rand(n_cities, 2)
self.distances = np.zeros((n_cities, n_cities))
for i in range(n_cities):
for j in range(n_cities):
self.distances[i][j] = np.sqrt(np.sum(np.square(self.cities[i] - self.cities[j])))
self.reset()
def reset(self):
self.visited = np.zeros(self.n_cities)
self.current_city = np.random.randint(self.n_cities)
self.visited[self.current_city] = 1
self.total_distance = 0
self.step_count = 0
return self.get_state()
def get_state(self):
state = np.zeros((self.n_cities, 3))
for i in range(self.n_cities):
state[i][0] = self.visited[i]
state[i][1] = self.distances[self.current_city][i]
state[i][2] = self.total_distance
return state.flatten()
def step(self, action):
self.step_count += 1
next_city = np.argmax(action)
if self.visited[next_city] == 1:
reward = -10
else:
reward = -self.distances[self.current_city][next_city]
self.visited[next_city] = 1
self.current_city = next_city
self.total_distance += self.distances[self.current_city][next_city]
done = (self.step_count == self.n_cities)
return self.get_state(), reward, done, {}
# 训练智能体
def train(sess, env, actor, critic):
for i_episode in range(1000):
state = env.reset()
total_reward = 0
while True:
action = actor.choose_action(state[np.newaxis, :])
state_, reward, done, _ = env.step(action)
td_error = critic.learn(state[np.newaxis, :], reward, state_[np.newaxis, :])
actor.learn(state[np.newaxis, :], action, td_error)
state = state_
total_reward += reward
if done:
break
print('Episode:', i_episode, 'Total reward:', total_reward)
# 测试智能体
def test(sess, env, actor):
state = env.reset()
while True:
action = actor.choose_action(state[np.newaxis, :])
state_, reward, done, _ = env.step(action)
state = state_
if done:
break
print('Total distance:', env.total_distance)
# 创建环境和智能体
env = TSPEnv(10)
sess = tf.Session()
actor = Actor(sess, env.observation_space.shape[0], env.action_space.n)
critic = Critic(sess, env.observation_space.shape[0])
# 初始化变量
sess.run(tf.global_variables_initializer())
# 训练智能体
train(sess, env, actor, critic)
# 测试智能体
test(sess, env, actor)
```
阅读全文