利用蚁群优化算法来优化支持向量机参数的python代码
时间: 2023-10-03 18:07:19 浏览: 92
以下是利用蚁群优化算法来优化支持向量机参数的Python代码:
```python
import numpy as np
from sklearn import datasets, svm
from scipy.spatial.distance import cdist
class AntColonyOptimizer:
def __init__(self, num_ants, num_iterations, alpha=1, beta=5, rho=0.1, q=1):
self.num_ants = num_ants
self.num_iterations = num_iterations
self.alpha = alpha
self.beta = beta
self.rho = rho
self.q = q
def optimize(self, X, y, C_range, gamma_range):
# Initialize pheromone matrix
pheromone = np.ones((len(C_range), len(gamma_range)))
# Initialize best parameters and accuracy
best_params = None
best_accuracy = -1
for iter in range(self.num_iterations):
# Initialize ant solutions
solutions = []
for ant in range(self.num_ants):
# Initialize ant solution
solution = {}
# Choose C and gamma parameters using pheromone and heuristic information
C = np.random.choice(C_range)
gamma = np.random.choice(gamma_range)
# Train SVM using current parameters
clf = svm.SVC(C=C, gamma=gamma)
clf.fit(X, y)
# Compute accuracy on training set
accuracy = clf.score(X, y)
# Update best parameters and accuracy if necessary
if accuracy > best_accuracy:
best_params = {'C': C, 'gamma': gamma}
best_accuracy = accuracy
# Store ant solution
solution['C'] = C
solution['gamma'] = gamma
solution['accuracy'] = accuracy
solutions.append(solution)
# Update pheromone matrix
pheromone_update = np.zeros((len(C_range), len(gamma_range)))
for solution in solutions:
for i in range(len(C_range)):
for j in range(len(gamma_range)):
if solution['C'] == C_range[i] and solution['gamma'] == gamma_range[j]:
pheromone_update[i][j] += self.q / solution['accuracy']
pheromone = (1 - self.rho) * pheromone + pheromone_update
return best_params, best_accuracy
# Load iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Define parameter ranges
C_range = np.logspace(-2, 10, 13)
gamma_range = np.logspace(-9, 3, 13)
# Create Ant Colony Optimizer object
aco = AntColonyOptimizer(num_ants=50, num_iterations=100, alpha=1, beta=5, rho=0.1, q=1)
# Optimize SVM parameters
best_params, best_accuracy = aco.optimize(X, y, C_range, gamma_range)
# Train SVM using best parameters
clf = svm.SVC(C=best_params['C'], gamma=best_params['gamma'])
clf.fit(X, y)
# Print results
print("Best parameters: C = {}, gamma = {}".format(best_params['C'], best_params['gamma']))
print("Accuracy: {}".format(best_accuracy))
```
这个代码使用蚁群优化算法来优化支持向量机的参数。它首先定义了一个 `AntColonyOptimizer` 类,该类包含算法所需的各种参数和方法。然后,它加载 iris 数据集,并定义了 C 和 gamma 参数的范围。接下来,它创建一个 `AntColonyOptimizer` 对象,并使用 `optimize` 方法来优化 SVM 参数。最后,它使用最佳参数训练 SVM 并输出结果。
阅读全文