def point(dst,roll): color = dst[roll] black_count = np.sum(color == 0) if black_count == 0: return 0 else: black_index = np.where(color == 0) return black_index[0][0] while (1): ret, frame = cap.read() cv2.imshow("recognize_face", frame) # 转化为灰度图 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 大津法二值化 retval, dst = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU) # 膨胀,白区域变大 dst = cv2.dilate(dst, None, iterations=2) # # 腐蚀,白区域变小 # dst = cv2.erode(dst, None, iterations=6) dst = dst.transpose() image = dst image = cv2.flip(dst,0,dst=None) cv2.imshow("灰度图", image) # 单看某行的像素值 y1 = point(dst,500) y2 = point(dst,300) y3 = point(dst,600) direction_line = y3-y2 if y2==0 or y3==0 : direction_line = 0 direction = y1-200 if cv2.waitKey(1) & 0xFF == ord('q'): break distance = Distance_test() if distance < 50: stop() print("stoping") else: run(direction*0.1,direction_line)
时间: 2023-12-13 10:05:17 浏览: 111
这是一个在树莓派(Raspberry Pi)上使用OpenCV库进行图像处理,结合超声波测距和电机控制的小车控制程序。这个程序的主要逻辑是:循环读取摄像头数据并在窗口中显示,将图像转化为灰度图并进行二值化、膨胀、腐蚀等处理,然后根据某些行的像素值计算出行进方向和方向偏移量,并根据超声波传感器的距离值控制小车的运动。
具体来说,程序中定义了一个名为point()的函数,用于计算某一行像素值中黑色像素的位置。然后在主程序中循环调用该函数计算不同行的像素值,并根据这些值计算出行进方向和方向偏移量。此外,程序还调用Distance_test()函数获取超声波传感器的距离值,并根据距离值控制小车的运动,如果距离小于50,则停车,否则根据行进方向和方向偏移量控制小车前进。
需要注意的是,程序中使用了一些OpenCV库中的图像处理函数,如cvtColor()、threshold()、dilate()等,用于对图像进行处理。同时,程序还需要连接超声波传感器和电机驱动模块等硬件设备,才能实现完整的小车控制功能。
相关问题
r = dst[roll] black_count = np.sum(color == 0) if black_count == 0: return 0 else: black_index = np.where(color == 0) return black_index[0][0] while (1): ret, frame = cap.read() cv2.imshow("recognize_face", frame)
这是在使用Python中的OpenCV库进行图像处理时,用于读取摄像头数据并显示的语句。在这个循环中,使用cap.read()函数读取摄像头数据,并将图像显示在名为"recognize_face"的窗口中,使用cv2.imshow()函数实现。在这个程序中,还定义了一个名为dst的数组,并使用numpy库中的一些函数对其进行处理,具体操作不在这里详述。同时,也定义了一个名为color的变量,用于表示图像中黑色像素的数量。如果黑色像素数量为0,则返回0,否则找到第一个黑色像素的位置,并返回该位置的索引。这个程序的具体功能需要根据完整代码的上下文和注释来判断。
gray_fft = np.fft.fft2(gray) gray_fftshift = np.fft.fftshift(gray_fft) dst_fftshift = np.zeros_like(gray_fftshift) M, N = np.meshgrid(np.arange(-cols // 2, cols // 2), np.arange(-rows // 2, rows // 2)) D = np.sqrt(M ** 2 + N ** 2) Z = (rh - r1) * (1 - np.exp(-c * (D ** 2 / d0 ** 2))) + r1 dst_fftshift = Z * gray_fftshift dst_fftshift = (h - l) * dst_fftshift + l dst_ifftshift = np.fft.ifftshift(dst_fftshift) dst_ifft = np.fft.ifft2(dst_ifftshift) dst = np.real(dst_ifft) dst = np.uint8(np.clip(dst, 0, 255)) return dst
在这个函数中,首先使用np.fft.fft2函数将输入图像进行二维傅里叶变换,然后使用np.fft.fftshift函数将变换结果进行中心化处理。接下来,创建一个与输入图像大小相同的全零数组dst_fftshift,并计算出输入图像的行数和列数。
函数接着使用np.meshgrid函数生成网格坐标,并根据频率域滤波器的公式计算出增益系数Z。然后,将增益系数Z乘以中心化的傅里叶变换结果gray_fftshift,得到增益后的频率域图像dst_fftshift。
接着,将增益后的频率域图像dst_fftshift乘以(h - l),再加上l,得到最终的频率域图像。然后,使用np.fft.ifftshift函数将频率域图像逆中心化,并使用np.fft.ifft2函数将其转换回空间域。最后,将输出图像进行限幅处理,转换为8位无符号整数类型,然后返回输出图像。
阅读全文