逐行分析下面的代码:import random import numpy as np import pandas as pd import math from operator import itemgetter data_path = './ml-latest-small/' data = pd.read_csv(data_path+'ratings.csv') data.head() data.pivot(index='userId', columns='newId', values='rating') trainSet, testSet = {}, {} trainSet_len, testSet_len = 0, 0 pivot = 0.75 for ele in data.itertuples(): user, new, rating = getattr(ele, 'userId'), getattr(ele, 'newId'), getattr(ele, 'rating') if random.random() < pivot: trainSet.setdefault(user, {}) trainSet[user][new] = rating trainSet_len += 1 else: testSet.setdefault(user, {}) testSet[user][new] = rating testSet_len += 1 print('Split trainingSet and testSet success!') print('TrainSet = %s' % trainSet_len) print('TestSet = %s' % testSet_len) user_sim_matrix = {} print('Building new-user table ...') new_user = {} for user, news in trainSet.items(): for new in news: if new not in new_user: new_user[new] = set() new_user[new].add(user) print('Build new-user table success!') new_count = len(new_user) print('Total new number = %d' % new_count) print('Build user co-rated users matrix ...') for new, users in new_user.items(): for u in users: for v in users: if u == v: continue user_sim_matrix.setdefault(u, {}) user_sim_matrix[u].setdefault(v, 0) user_sim_matrix[u][v] += 1 print('Build user co-rated users matrix success!') print('Calculating user similarity matrix ...') for u, related_users in user_sim_matrix.items(): for v, count in related_users.items(): user_sim_matrix[u][v] = count / math.sqrt(len(trainSet[u]) * len(trainSet[v])) print('Calculate user similarity matrix success!') k = 20 n = 10 aim_user = 3 rank ={} watched_news = trainSet[aim_user] for v, wuv in sorted(user_sim_matrix[aim_user].items(), key=lambda x: x[1], reverse=True)[0:k]: for new in trainSet[v]: if new in watched_news: continue rank.setdefault(new, 0) rank[new] += wuv rec_news = sorted(rank.items(), key=itemgetter(1), reverse=True)[:n] rec_news
时间: 2024-04-28 10:22:27 浏览: 181
这段代码是一个协同过滤推荐算法的实现,主要包括以下步骤:
1. 导入需要的包:random、numpy、pandas、math、itemgetter。
2. 读取评分数据文件,将数据拆分成训练集和测试集,并统计它们的大小。
3. 构建新闻-用户表,记录每个用户评分过的新闻。
4. 构建用户相似度矩阵,记录每个用户与其他用户的相似度。
5. 根据目标用户和相似度矩阵,推荐目标用户可能感兴趣的新闻。
具体实现细节如下:
1. 读取评分数据文件,并将评分数据拆分成训练集和测试集,以随机数的方式将每个评分数据划分到训练集或测试集中。
2. 构建新闻-用户表,记录每个用户评分过的新闻。具体实现是遍历训练集中的每个评分数据,然后将用户和新闻作为字典的键,评分作为字典的值,添加到训练集字典中。
3. 构建用户相似度矩阵,记录每个用户与其他用户的相似度。具体实现是遍历新闻-用户表,对于每个新闻,将评分过该新闻的所有用户记录到一个集合中。然后遍历集合中的每个用户对,计算它们之间的相似度,存储到用户相似度矩阵中。
4. 根据目标用户和相似度矩阵,推荐目标用户可能感兴趣的新闻。具体实现是遍历相似度矩阵中与目标用户相似度最高的k个用户,然后遍历这些用户评分过的新闻,计算每个新闻与目标用户的相似度权重,最后按权重排序,选取前n个新闻作为推荐结果。
相关问题
import numpy as np import pandas as pd path = "F:/Desktop/Xiameimei/" data = pd.read_excel(path + 'shuju.xlsx') data.head()写的有问题吗
代码有问题。应该是这样写:
```
import numpy as np
import pandas as pd
path = "F:/Desktop/Xiameimei/"
data = pd.read_excel(path + 'shuju.xlsx')
data.head()
```
这段代码的作用是导入numpy和pandas库,读取"shuju.xlsx"文件,并展示文件的前5行数据。
阅读全文